Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38113 by maxmathsup by imad last updated on 21/Jun/18

let p>1 calculate  ∫_0 ^(2π)       (dt/((p +cost)^2 ))

letp>1calculate02πdt(p+cost)2

Commented bymath khazana by abdo last updated on 08/Jul/18

let put A_p = ∫_0 ^(2π)      (dt/((p +cost)^2 ))  changement  e^(it)  =z give  A_p = ∫_(∣z∣=1)     (1/((p +((z+z^(−1) )/2))^2 )) (dz/(iz))  =∫_(∣z∣=1)       ((−4i dz)/(z(2p +z +z^(−1) )^2 ))  = ∫_(∣z∣=1)     ((−4idz)/(z( 2p +z +(1/z))^2 ))  =∫_(∣z∣=1)      ((−4izdz)/((2pz +z^2  +1)^2 ))  =∫_(∣z∣=1)      ((−4izdz)/((z^2  +2pz +1)^2 ))  let  ϕ(z) = ((−4iz)/((z^2  +2pz +1)^2 )) poles of ϕ?  roots of z^2  +2pz +1  Δ^′  =p^2 −1  >0 ⇒ z_1 =−p +(√(p^2  −1))  z_2 =−p −(√(p^2  −1))  ϕ(z)   =  ((−4iz)/((z−z_1 )^2 (z−z_2 )^2 ))  ∣z_1 ∣ −1 = p−(√(p^2 −1))−1 =p−1 −(√(p^2  −1))  (p−1)^2 −(p^2 −1) =p^2  −2p +1−p^2  +1  =−2p+2 =−2(p−1)<0 ⇒∣z_1 ∣<1  ∣z_2 ∣>1 ⇒ ∫_(∣z∣=1) ϕ(z)dz =2iπ Res(ϕ,z_1 )

letputAp=02πdt(p+cost)2changement eit=zgive Ap=z∣=11(p+z+z12)2dziz =z∣=14idzz(2p+z+z1)2 =z∣=14idzz(2p+z+1z)2 =z∣=14izdz(2pz+z2+1)2 =z∣=14izdz(z2+2pz+1)2let φ(z)=4iz(z2+2pz+1)2polesofφ? rootsofz2+2pz+1 Δ=p21>0z1=p+p21 z2=pp21 φ(z)=4iz(zz1)2(zz2)2 z11=pp211=p1p21 (p1)2(p21)=p22p+1p2+1 =2p+2=2(p1)<0⇒∣z1∣<1 z2∣>1z∣=1φ(z)dz=2iπRes(φ,z1)

Commented bymath khazana by abdo last updated on 08/Jul/18

Res(ϕ,z_1 ) =lim_(z→z_1 )   ?(1/((2−1)!)) {(z−z_1 )^2  ϕ(z)}^((1))   =lim_(z→z_1 )    { ((−4iz)/((z−z_2 )^2 ))}^((1))   =−4i lim_(z→z_1 ) (((z−z_2 )^2  −2(z−z_2 )z)/((z−z_2 )^4 ))  =−4i lim_(z→z_1 )  (((z−z_2 ) −2z)/((z−z_2 )^3 ))  =4i lim_(z→z_1 )   ((z +z_2 )/((z−z_2 )^2 ))  =4i ((z_1  +z_2 )/((z_(1 ) −z_2 )^2 )) =4i  ((−2p)/((2(√(p^2 −1)))^2 )) = ((−2ip)/((p^2  −1)))  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ  (((−2ip)/(p^2 −1)))= ((4pπ)/(p^2 −1)) ⇒  A_p = ((4pπ)/(p^2  −1)) .

Res(φ,z1)=limzz1?1(21)!{(zz1)2φ(z)}(1) =limzz1{4iz(zz2)2}(1) =4ilimzz1(zz2)22(zz2)z(zz2)4 =4ilimzz1(zz2)2z(zz2)3 =4ilimzz1z+z2(zz2)2 =4iz1+z2(z1z2)2=4i2p(2p21)2=2ip(p21) +φ(z)dz=2iπ(2ipp21)=4pπp21 Ap=4pπp21.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com