All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 38113 by maxmathsup by imad last updated on 21/Jun/18
letp>1calculate∫02πdt(p+cost)2
Commented bymath khazana by abdo last updated on 08/Jul/18
letputAp=∫02πdt(p+cost)2changement eit=zgive Ap=∫∣z∣=11(p+z+z−12)2dziz =∫∣z∣=1−4idzz(2p+z+z−1)2 =∫∣z∣=1−4idzz(2p+z+1z)2 =∫∣z∣=1−4izdz(2pz+z2+1)2 =∫∣z∣=1−4izdz(z2+2pz+1)2let φ(z)=−4iz(z2+2pz+1)2polesofφ? rootsofz2+2pz+1 Δ′=p2−1>0⇒z1=−p+p2−1 z2=−p−p2−1 φ(z)=−4iz(z−z1)2(z−z2)2 ∣z1∣−1=p−p2−1−1=p−1−p2−1 (p−1)2−(p2−1)=p2−2p+1−p2+1 =−2p+2=−2(p−1)<0⇒∣z1∣<1 ∣z2∣>1⇒∫∣z∣=1φ(z)dz=2iπRes(φ,z1)
Res(φ,z1)=limz→z1?1(2−1)!{(z−z1)2φ(z)}(1) =limz→z1{−4iz(z−z2)2}(1) =−4ilimz→z1(z−z2)2−2(z−z2)z(z−z2)4 =−4ilimz→z1(z−z2)−2z(z−z2)3 =4ilimz→z1z+z2(z−z2)2 =4iz1+z2(z1−z2)2=4i−2p(2p2−1)2=−2ip(p2−1) ∫−∞+∞φ(z)dz=2iπ(−2ipp2−1)=4pπp2−1⇒ Ap=4pπp2−1.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com