All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 38114 by maxmathsup by imad last updated on 21/Jun/18
letIn=∫02πdx(p+cost)nwithp>1 findthevalueofIn
Commented byabdo mathsup 649 cc last updated on 08/Jul/18
changementeit=zgive In=∫∣z∣=11(p+z+z−12)ndziz =∫∣z∣=1−i2n(2p+z+z−1)ndzz =∫∣z∣=1−i2nz{2p+z+1z}ndz =∫∣z∣=1−i2nzn−1{2pz+z2+1}ndzlet φ(z)=−i2nzn−1(z2+2pz+1)npolesofφ? z2+2pz+1=0 Δ′=p2−1>0⇒realroots z1=−p+p2−1andz2=−p−p2−1 wehaveprovedthat∣z1∣<1and∣z2∣>1so ∫∣z∣=1φ(z)dz=2iπRes(φ,z1)we?have φ(z)=−i2nzn−1(z−z1)n(z−z2)n⇒ Res(φ,z1)=limz→z11(n−1)!{(z−z1)nφ(z)}(n−1) =−i2nlimz→z11(n−1)!{zn−1(z−z2)n})n−1)but {zn−1(z−z2)−n}(n−1) =∑k=0n−1Cn−1k{(z−z2)−n}(k)(zn−1)(n−1−k) wehave (z−z2)−n}(1)=−n(z−z2)−n−1 {(z−z2)−n}(2)=(−1)2n(n+1)(z−z2)−n−2 {(z−z2)−n}(k)=(−1)kn(n+1)...(n+k−1)(z−z2)−n−k also (zn)(p)=n(n−1)...(n−p+1)zn−pifp⩽n⇒ (zn−1)(n−1−k)=(n−1)(n−2)...(n−1−n+1+k+1)zn−1−n+1+k =(n−1)(n−2).....(k+1)zk =(n−1)!k!zk⇒ {zn−1(z−z2)−n}(n−1)= =∑k=0n−1Cn−1k(−1)kn(n+1)...(n+k−1)(z−z2)−n−k(n−1)!k!zk Res(φ,z1)= −i2n∑k=0n−1Cn−1k(−1)kn(n+1)...(n+k−1)(z1−z2)−n−kz1kk! ∫∣z∣=1φ(z)dz=π2n+1Anwith An=∑k=0n−1Cn−1k(−1)kn(n+1)...(n+k−1)(2p2−1)−n−k(−p+p2−1)kk! =Ip
In=∫∣z∣=1φ(z)dz=π2n+1An
Terms of Service
Privacy Policy
Contact: info@tinkutara.com