Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38116 by maxmathsup by imad last updated on 21/Jun/18

find    I = ∫_0 ^∞    ((cos(λx))/(ch(2x)))dx

$${find}\:\:\:\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left(\lambda{x}\right)}{{ch}\left(\mathrm{2}{x}\right)}{dx}\: \\ $$

Commented by prof Abdo imad last updated on 29/Jun/18

I = 2 ∫_0 ^∞     ((cos(λx))/(e^(2x)  +e^(−2x) ))dx  =2 ∫_0 ^∞   ((e^(−2x) cos(λx))/(1+e^(−4x) ))dx  =2 ∫_0 ^∞   e^(−2x) cos(λx)(Σ_(n=0) ^∞ (−1)^n  e^(−4nx) )dx  =2 Σ_(n=0) ^∞  (−1)^n  ∫_0 ^∞   e^(−(2+4n)x) cos(λx)dx  =2 Σ_(n=0) ^∞ (−1)^n  A_n   A_n =Re(  ∫_0 ^∞   e^(−(2+4n)x +iλx) dx) but  ∫_0 ^∞   e^({−(2+4n)+iλ)x) dx=[(1/(−(2+4n)+iλ))e^({−(2+4n)+iλ}x) ]_0 ^(+∞)   = (1/(2+4n−iλ)) =((2+4n +iλ)/((2+4n)^2  +λ^2 )) ⇒  A_n = ((2+4n)/((2+4n)^2  +λ^2 )) ⇒  I = 2Σ_(n=0) ^∞ (−1)^n     ((2+4n)/((2+4n)^(2 )  +λ^2 ))  this serie will be calculalated by sir fourier  ..will be continued...

$${I}\:=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{cos}\left(\lambda{x}\right)}{{e}^{\mathrm{2}{x}} \:+{e}^{−\mathrm{2}{x}} }{dx} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\mathrm{2}{x}} {cos}\left(\lambda{x}\right)}{\mathrm{1}+{e}^{−\mathrm{4}{x}} }{dx} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\mathrm{2}{x}} {cos}\left(\lambda{x}\right)\left(\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:{e}^{−\mathrm{4}{nx}} \right){dx} \\ $$$$=\mathrm{2}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left(\mathrm{2}+\mathrm{4}{n}\right){x}} {cos}\left(\lambda{x}\right){dx} \\ $$$$=\mathrm{2}\:\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:{A}_{{n}} \\ $$$${A}_{{n}} ={Re}\left(\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left(\mathrm{2}+\mathrm{4}{n}\right){x}\:+{i}\lambda{x}} {dx}\right)\:{but} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{\left\{−\left(\mathrm{2}+\mathrm{4}{n}\right)+{i}\lambda\right){x}} {dx}=\left[\frac{\mathrm{1}}{−\left(\mathrm{2}+\mathrm{4}{n}\right)+{i}\lambda}{e}^{\left\{−\left(\mathrm{2}+\mathrm{4}{n}\right)+{i}\lambda\right\}{x}} \right]_{\mathrm{0}} ^{+\infty} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}+\mathrm{4}{n}−{i}\lambda}\:=\frac{\mathrm{2}+\mathrm{4}{n}\:+{i}\lambda}{\left(\mathrm{2}+\mathrm{4}{n}\right)^{\mathrm{2}} \:+\lambda^{\mathrm{2}} }\:\Rightarrow \\ $$$${A}_{{n}} =\:\frac{\mathrm{2}+\mathrm{4}{n}}{\left(\mathrm{2}+\mathrm{4}{n}\right)^{\mathrm{2}} \:+\lambda^{\mathrm{2}} }\:\Rightarrow \\ $$$${I}\:=\:\mathrm{2}\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:\:\:\:\frac{\mathrm{2}+\mathrm{4}{n}}{\left(\mathrm{2}+\mathrm{4}{n}\right)^{\mathrm{2}\:} \:+\lambda^{\mathrm{2}} } \\ $$$${this}\:{serie}\:{will}\:{be}\:{calculalated}\:{by}\:{sir}\:{fourier} \\ $$$$..{will}\:{be}\:{continued}... \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com