Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38126 by maxmathsup by imad last updated on 22/Jun/18

calculate   ∫_0 ^∞   e^(−2x) (√(1+e^(−4x) ))dx .

$${calculate}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\mathrm{2}{x}} \sqrt{\mathrm{1}+{e}^{−\mathrm{4}{x}} }{dx}\:. \\ $$

Commented by math khazana by abdo last updated on 26/Jun/18

let I = ∫_0 ^∞   e^(−2x) (√(1+e^(−4x) ))dx changement  e^(−2x) =t give −2x =ln(t)and   I = −∫_0 ^1  t(√(1+t^2 ))((−dt)/(2t)) =(1/2) ∫_0 ^1  (√(1+t^2 ))dt   2I =_(t=sh(u))   ∫_0 ^(ln(1 +(√2)))   ch(t)ch(t)dt  =(1/2) ∫_0 ^(ln(1+(√2))) (1+ch(2t))dt  =((ln(1+(√2)))/2) +(1/4) [sh(2t)]_0 ^(ln(1+(√2)))   =((ln(1+(√2)))/2) +(1/4)sh(2ln(1+(√2)))  =((ln(1+(√2))/2)  +(1/8){(1+(√2))^2  −(1+(√2))^(−2) } .

$${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\mathrm{2}{x}} \sqrt{\mathrm{1}+{e}^{−\mathrm{4}{x}} }{dx}\:{changement} \\ $$$${e}^{−\mathrm{2}{x}} ={t}\:{give}\:−\mathrm{2}{x}\:={ln}\left({t}\right){and}\: \\ $$$${I}\:=\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\frac{−{dt}}{\mathrm{2}{t}}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\: \\ $$$$\mathrm{2}{I}\:=_{{t}={sh}\left({u}\right)} \:\:\int_{\mathrm{0}} ^{{ln}\left(\mathrm{1}\:+\sqrt{\mathrm{2}}\right)} \:\:{ch}\left({t}\right){ch}\left({t}\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} \left(\mathrm{1}+{ch}\left(\mathrm{2}{t}\right)\right){dt} \\ $$$$=\frac{{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{4}}\:\left[{sh}\left(\mathrm{2}{t}\right)\right]_{\mathrm{0}} ^{{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} \\ $$$$=\frac{{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{4}}{sh}\left(\mathrm{2}{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\right) \\ $$$$=\frac{{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right.}{\mathrm{2}}\:\:+\frac{\mathrm{1}}{\mathrm{8}}\left\{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)^{\mathrm{2}} \:−\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)^{−\mathrm{2}} \right\}\:. \\ $$

Commented by math khazana by abdo last updated on 26/Jun/18

I =((ln(1+(√2)))/4) +(1/(16)){ (1+(√2))^2 −(1+(√2))^(−2) }.

$${I}\:=\frac{{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{16}}\left\{\:\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)^{\mathrm{2}} −\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)^{−\mathrm{2}} \right\}. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jun/18

t=e^(−2x )  dt=−2e^(−2x) dx  =((−1)/2)∫_1 ^0 (√(1+t^2 ))  dt  =(1/2)∫_0 ^1 (√(1+t^2 ))  dt  use formula ∫(√(x^2 +a^2 )) dx

$${t}={e}^{−\mathrm{2}{x}\:} \:{dt}=−\mathrm{2}{e}^{−\mathrm{2}{x}} {dx} \\ $$$$=\frac{−\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}} ^{\mathrm{0}} \sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\:\:{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\:\:{dt} \\ $$$${use}\:{formula}\:\int\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }\:{dx} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 22/Jun/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com