Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38130 by gunawan last updated on 22/Jun/18

1. ∫tan^3 (2x)sec^5 (2x) dx   2. ∫_0 ^(π/3) tan^5 (x)sec^6 (x) dx   3. ∫tan^6 (ay) dy

1.tan3(2x)sec5(2x)dx2.0π3tan5(x)sec6(x)dx3.tan6(ay)dy

Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jun/18

1)∫((sin^2 (2x)sin(2x))/(cos^8 (2x)))dx  t=cos2x   dt=−2sin2xdx  =((−1)/2)∫((1−t^2 )/t^8 )×dt  =((−1)/2){(t^(−7) /(−7))−(t^(−5) /((−5)))}+c  (1/(14))×(1/(cos^7 (2x)))−(1/(10))×(1/(cos^5 (2x)))+c

1)sin2(2x)sin(2x)cos8(2x)dxt=cos2xdt=2sin2xdx=121t2t8×dt=12{t77t5(5)}+c114×1cos7(2x)110×1cos5(2x)+c

Answered by Joel579 last updated on 22/Jun/18

(3)  I = ∫ tan^6  (ay) dy    (u = ay  →  du = a dy)      = (1/a) ∫ (sec^2  u − 1)^3  du      = (1/a) ∫ (sec^6  u − 3sec^4  u + 3sec^2  u − 1) du

(3)I=tan6(ay)dy(u=aydu=ady)=1a(sec2u1)3du=1a(sec6u3sec4u+3sec2u1)du

Commented by Joel579 last updated on 22/Jun/18

Answered by Joel579 last updated on 22/Jun/18

(3)  I = ∫ tan^6  (ay) dy   (u = ay  →  du = a dy)      = (1/a) ∫ tan^2  u . tan^4  u du      = (1/a) ∫ (sec^2  u . tan^4  u − tan^4  u) du      = (1/a) ∫ [sec^2  u . tan^4  u − (sec^2  u − 1)tan^2  u] du      = (1/a) ∫ [sec^2  u . tan^4  u − sec^2  u . tan^2  u] du + ∫ tan^2  u du  t = tan u  →  dt = sec^2  u du  I = (1/a) ∫ t^4  − t^2  dt + tan u − u      = (1/a)((t^5 /5) − (t^3 /3) + tan u − u) + C

(3)I=tan6(ay)dy(u=aydu=ady)=1atan2u.tan4udu=1a(sec2u.tan4utan4u)du=1a[sec2u.tan4u(sec2u1)tan2u]du=1a[sec2u.tan4usec2u.tan2u]du+tan2udut=tanudt=sec2uduI=1at4t2dt+tanuu=1a(t55t33+tanuu)+C

Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jun/18

2)∫_0 ^(Π/3) ((sin^5 x)/(cos^5 x))×(1/(cos^6 x))dx  =∫_0 ^(Π/3) ((sinx×(1−cos^2 x)^2 dx)/(cos^(11) x))  =(((−1))/)∫_0 ^(Π/3) ((1−2cos^2 x+cos^4 x)/(cos^(11) x))×d(cosx)  =(−1)∫_0 ^(Π/3) {cos^(−11) x−2cos^(−9) x+cos^(−7) (x)}(dcosx)  =∣((−1)/(−10))×cos^(−10) x+2((cos^(−8) x)/(−8))−(1/(−6))×cos^(−6) x∣_0 ^(Π/3)

2)0Π3sin5xcos5x×1cos6xdx=0Π3sinx×(1cos2x)2dxcos11x=(1)0Π312cos2x+cos4xcos11x×d(cosx)=(1)0Π3{cos11x2cos9x+cos7(x)}(dcosx)=∣110×cos10x+2cos8x816×cos6x0Π3

Commented by gunawan last updated on 22/Jun/18

Thank You very much Sir

ThankYouverymuchSir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com