Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 38181 by rahul 19 last updated on 22/Jun/18

If y=  x^((lnx)^(ln(lnx)) )  then (dy/dx) = ?

$$\mathrm{If}\:\mathrm{y}=\:\:{x}^{\left({lnx}\right)^{{ln}\left({lnx}\right)} } \:{then}\:\frac{{dy}}{{dx}}\:=\:? \\ $$

Commented by rahul 19 last updated on 22/Jun/18

I ′ve done by taking log and I′m getting  (y/x)(lnx)^(ln(lnx)) (ln(lnx)+1).  Someone pls verify.

$$\mathrm{I}\:'\mathrm{ve}\:\mathrm{done}\:\mathrm{by}\:\mathrm{taking}\:\mathrm{log}\:\mathrm{and}\:\mathrm{I}'\mathrm{m}\:\mathrm{getting} \\ $$$$\frac{\mathrm{y}}{{x}}\left({lnx}\right)^{{ln}\left({lnx}\right)} \left({ln}\left({lnx}\right)+\mathrm{1}\right). \\ $$$${S}\mathrm{omeone}\:\mathrm{pls}\:\mathrm{verify}. \\ $$

Commented by MJS last updated on 23/Jun/18

it′s almost right, but the last factor must be   (2ln(ln x)+1)

$$\mathrm{it}'\mathrm{s}\:\mathrm{almost}\:\mathrm{right},\:\mathrm{but}\:\mathrm{the}\:\mathrm{last}\:\mathrm{factor}\:\mathrm{must}\:\mathrm{be} \\ $$$$\:\left(\mathrm{2ln}\left(\mathrm{ln}\:{x}\right)+\mathrm{1}\right) \\ $$

Commented by abdo mathsup 649 cc last updated on 23/Jun/18

let put a(x)=(ln(x))^(ln(lnx))  ⇒y(x)= x^(a(x))   =e^(a(x)ln(x))  ⇒(dy/dx)(x)={xa(x)}^′  y(x)  =(a(x) +xa^′ (x)) y(x) but  a(x)=e^(ln(ln(x)ln(lnx)) =e^({ln(lnx)}^2  ⇒)   a^′ (x)= 2(ln(lnx))(ln(lnx))^′  a(x)  =(2/(xln(x)))ln(ln(x))a(x) ⇒  y^′ (x)=a(x) (1+x (2/(xln(x)))ln(ln(x)))y(x)  =a(x)y(x)( 1+ ((2ln(ln(x)))/(ln(x)))).

$${let}\:{put}\:{a}\left({x}\right)=\left({ln}\left({x}\right)\right)^{{ln}\left({lnx}\right)} \:\Rightarrow{y}\left({x}\right)=\:{x}^{{a}\left({x}\right)} \\ $$$$={e}^{{a}\left({x}\right){ln}\left({x}\right)} \:\Rightarrow\frac{{dy}}{{dx}}\left({x}\right)=\left\{{xa}\left({x}\right)\right\}^{'} \:{y}\left({x}\right) \\ $$$$=\left({a}\left({x}\right)\:+{xa}^{'} \left({x}\right)\right)\:{y}\left({x}\right)\:{but} \\ $$$${a}\left({x}\right)={e}^{{ln}\left({ln}\left({x}\right){ln}\left({lnx}\right)\right.} ={e}^{\left\{{ln}\left({lnx}\right)\right\}^{\mathrm{2}} \:\Rightarrow} \\ $$$${a}^{'} \left({x}\right)=\:\mathrm{2}\left({ln}\left({lnx}\right)\right)\left({ln}\left({lnx}\right)\right)^{'} \:{a}\left({x}\right) \\ $$$$=\frac{\mathrm{2}}{{xln}\left({x}\right)}{ln}\left({ln}\left({x}\right)\right){a}\left({x}\right)\:\Rightarrow \\ $$$${y}^{'} \left({x}\right)={a}\left({x}\right)\:\left(\mathrm{1}+{x}\:\frac{\mathrm{2}}{{xln}\left({x}\right)}{ln}\left({ln}\left({x}\right)\right)\right){y}\left({x}\right) \\ $$$$={a}\left({x}\right){y}\left({x}\right)\left(\:\mathrm{1}+\:\frac{\mathrm{2}{ln}\left({ln}\left({x}\right)\right)}{{ln}\left({x}\right)}\right). \\ $$

Answered by MJS last updated on 23/Jun/18

(d/dx)[x^(f(x)) ]=x^(f(x)) ×(((f(x))/x)+(d/dx)[f(x)]×ln x)  f(x)=(ln x)^(g(x))   (d/dx)[f(x)]=(ln x)^(g(x)) ×(((g(x))/(xln x))+(d/dx)[g(x)]×ln(ln x))  g(x)=ln(ln x)  (d/dx)[g(x)]=(1/(xln x))    (d/dx)[f(x)]=(ln x)^(ln(ln x)) ×(((ln(ln x))/(xln x))+(1/(xln x))×ln(ln x))=       =2((ln(ln x))/(xln x))(ln x)^(ln(ln x))   (d/dx)[x^(f(x)) ]=x^((ln x)^(ln(ln x)) ) ×((((ln x)^(ln(ln x)) )/x)+2((ln(ln x))/(xln x))(ln x)^(ln(ln x)) ×ln x)=       =(1+2ln(ln x))(ln x)^(ln(ln x)) x^((ln x)^(ln(ln x)) −1)

$$\frac{{d}}{{dx}}\left[{x}^{{f}\left({x}\right)} \right]={x}^{{f}\left({x}\right)} ×\left(\frac{{f}\left({x}\right)}{{x}}+\frac{{d}}{{dx}}\left[{f}\left({x}\right)\right]×\mathrm{ln}\:{x}\right) \\ $$$${f}\left({x}\right)=\left(\mathrm{ln}\:{x}\right)^{{g}\left({x}\right)} \\ $$$$\frac{{d}}{{dx}}\left[{f}\left({x}\right)\right]=\left(\mathrm{ln}\:{x}\right)^{{g}\left({x}\right)} ×\left(\frac{{g}\left({x}\right)}{{x}\mathrm{ln}\:{x}}+\frac{{d}}{{dx}}\left[{g}\left({x}\right)\right]×\mathrm{ln}\left(\mathrm{ln}\:{x}\right)\right) \\ $$$${g}\left({x}\right)=\mathrm{ln}\left(\mathrm{ln}\:{x}\right) \\ $$$$\frac{{d}}{{dx}}\left[{g}\left({x}\right)\right]=\frac{\mathrm{1}}{{x}\mathrm{ln}\:{x}} \\ $$$$ \\ $$$$\frac{{d}}{{dx}}\left[{f}\left({x}\right)\right]=\left(\mathrm{ln}\:{x}\right)^{\mathrm{ln}\left(\mathrm{ln}\:{x}\right)} ×\left(\frac{\mathrm{ln}\left(\mathrm{ln}\:{x}\right)}{{x}\mathrm{ln}\:{x}}+\frac{\mathrm{1}}{{x}\mathrm{ln}\:{x}}×\mathrm{ln}\left(\mathrm{ln}\:{x}\right)\right)= \\ $$$$\:\:\:\:\:=\mathrm{2}\frac{\mathrm{ln}\left(\mathrm{ln}\:{x}\right)}{{x}\mathrm{ln}\:{x}}\left(\mathrm{ln}\:{x}\right)^{\mathrm{ln}\left(\mathrm{ln}\:{x}\right)} \\ $$$$\frac{{d}}{{dx}}\left[{x}^{{f}\left({x}\right)} \right]={x}^{\left(\mathrm{ln}\:{x}\right)^{\mathrm{ln}\left(\mathrm{ln}\:{x}\right)} } ×\left(\frac{\left(\mathrm{ln}\:{x}\right)^{\mathrm{ln}\left(\mathrm{ln}\:{x}\right)} }{{x}}+\mathrm{2}\frac{\mathrm{ln}\left(\mathrm{ln}\:{x}\right)}{{x}\mathrm{ln}\:{x}}\left(\mathrm{ln}\:{x}\right)^{\mathrm{ln}\left(\mathrm{ln}\:{x}\right)} ×\mathrm{ln}\:{x}\right)= \\ $$$$\:\:\:\:\:=\left(\mathrm{1}+\mathrm{2ln}\left(\mathrm{ln}\:{x}\right)\right)\left(\mathrm{ln}\:{x}\right)^{\mathrm{ln}\left(\mathrm{ln}\:{x}\right)} {x}^{\left(\mathrm{ln}\:{x}\right)^{\mathrm{ln}\left(\mathrm{ln}\:{x}\right)} −\mathrm{1}} \\ $$

Answered by rahul 19 last updated on 23/Jun/18

lny = (lnx)^(ln(lnx)) (lnx)  ⇒ ln y = ( lnx )^((ln(lnx)+1))   ⇒ (dy/dx)×(1/y) =( ln(lnx)+1)(lnx)^((ln(lnx))) ×(1/x)  ⇒ (dy/dx) = (y/x) (1.ln(lnx)+1)(lnx)^((ln(lnx))) .  Where am i wrong ??  Sir MJS ??

$${lny}\:=\:\left({lnx}\right)^{{ln}\left({lnx}\right)} \left({lnx}\right) \\ $$$$\Rightarrow\:\mathrm{ln}\:\mathrm{y}\:=\:\left(\:{lnx}\:\right)\:^{\left({ln}\left({lnx}\right)+\mathrm{1}\right)} \\ $$$$\Rightarrow\:\frac{\mathrm{dy}}{\mathrm{d}{x}}×\frac{\mathrm{1}}{{y}}\:=\left(\:{ln}\left({lnx}\right)+\mathrm{1}\right)\left({lnx}\right)^{\left({ln}\left({lnx}\right)\right)} ×\frac{\mathrm{1}}{{x}} \\ $$$$\Rightarrow\:\frac{\mathrm{dy}}{\mathrm{d}{x}}\:=\:\frac{{y}}{{x}}\:\left(\mathrm{1}.{ln}\left({lnx}\right)+\mathrm{1}\right)\left({lnx}\right)^{\left({ln}\left({lnx}\right)\right)} . \\ $$$${W}\mathrm{here}\:\mathrm{am}\:\mathrm{i}\:\mathrm{wrong}\:?? \\ $$$$\mathrm{Sir}\:\mathrm{MJS}\:?? \\ $$

Commented by MJS last updated on 23/Jun/18

please post the formula you′re using, I don′t  understand how you get to this:  (dy/dx)×(1/y) =( ln(lnx)+1)(lnx)^((ln(lnx))) ×(1/x)

$$\mathrm{please}\:\mathrm{post}\:\mathrm{the}\:\mathrm{formula}\:\mathrm{you}'\mathrm{re}\:\mathrm{using},\:\mathrm{I}\:\mathrm{don}'\mathrm{t} \\ $$$$\mathrm{understand}\:\mathrm{how}\:\mathrm{you}\:\mathrm{get}\:\mathrm{to}\:\mathrm{this}: \\ $$$$\frac{\mathrm{dy}}{\mathrm{d}{x}}×\frac{\mathrm{1}}{{y}}\:=\left(\:{ln}\left({lnx}\right)+\mathrm{1}\right)\left({lnx}\right)^{\left({ln}\left({lnx}\right)\right)} ×\frac{\mathrm{1}}{{x}} \\ $$

Commented by rahul 19 last updated on 24/Jun/18

Ok i got my mistake ! :)  i did like differentiate x^x   then i simply wrote x.x^(x−1) .1 which  is absolutely wrong!

$$\left.\mathrm{Ok}\:\mathrm{i}\:\mathrm{got}\:\mathrm{my}\:\mathrm{mistake}\:!\::\right) \\ $$$$\mathrm{i}\:\mathrm{did}\:\mathrm{like}\:\mathrm{differentiate}\:{x}^{{x}} \\ $$$${then}\:{i}\:{simply}\:{wrote}\:{x}.{x}^{{x}−\mathrm{1}} .\mathrm{1}\:{which} \\ $$$${is}\:{absolutely}\:{wrong}! \\ $$

Commented by MJS last updated on 24/Jun/18

good!  learning by doing and learning by mistakes  :−)

$$\mathrm{good}! \\ $$$$\mathrm{learning}\:\mathrm{by}\:\mathrm{doing}\:\mathrm{and}\:\mathrm{learning}\:\mathrm{by}\:\mathrm{mistakes} \\ $$$$\left.:−\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com