All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 38195 by maxmathsup by imad last updated on 22/Jun/18
letx⩾1andδ(x)=∑n=1∞(−1)nnx 1)calculateδ(x)intermsofξ(x)ifx>1 2)findδ(1) 3)findthevalueof∑n=1∞1(2n+1)2 4)calculateδ(3)intermsofξ(3).
Commented bymath khazana by abdo last updated on 23/Jun/18
1)δ(x)=∑n=1∞1(2n)x−∑n=0∞1(2n+1)x =2−xξ(x)−∑n=0∞1(2n+1)xbutwehave ξ(x)=∑n=1∞1nx=∑n=1∞1(2n)x+∑n=0∞1(2n+1)x =2−xξ(x)+∑n=0∞1(2n+1)x⇒ ∑n=0∞1(2n+1)x=(1−2−x)ξ(x)⇒ δ(x)=2−xξ(x)−(1−2−x)ξ(x) =(21−x−1)ξ(x) 2)δ(1)=∑n=1∞(−1)nn=−ln(2) 3)wehave∑n=0∞1(2n+1)2=(1−2−1)ξ(2) =34∑n=1∞1n2=34π26=π28 ∑n=0∞1(2n+1)2=π28. 4)δ(3)=(21−3−1)ξ(3)=(14−1)ξ(3) =−34ξ(3)⇒ ∑n=1∞(−1)nn3=−34∑n=1∞1n3.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com