Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 38195 by maxmathsup by imad last updated on 22/Jun/18

let x≥1 and δ(x)=Σ_(n=1) ^∞   (((−1)^n )/n^x )  1) calculate δ(x) interms of ξ(x) if x>1  2)find  δ(1)  3) find the value of  Σ_(n=1) ^∞  (1/((2n+1)^2 ))  4) calculate δ(3) interms of ξ(3).

letx1andδ(x)=n=1(1)nnx 1)calculateδ(x)intermsofξ(x)ifx>1 2)findδ(1) 3)findthevalueofn=11(2n+1)2 4)calculateδ(3)intermsofξ(3).

Commented bymath khazana by abdo last updated on 23/Jun/18

1) δ(x)= Σ_(n=1) ^∞   (1/((2n)^x )) −Σ_(n=0) ^∞  (1/((2n+1)^x ))  = 2^(−x)  ξ(x) −Σ_(n=0) ^∞   (1/((2n+1)^x )) but we have  ξ(x)=Σ_(n=1) ^∞   (1/n^x ) = Σ_(n=1) ^∞  (1/((2n)^x )) +Σ_(n=0) ^∞  (1/((2n+1)^x ))  =2^(−x) ξ(x) +Σ_(n=0) ^∞   (1/((2n+1)^x )) ⇒  Σ_(n=0) ^∞    (1/((2n+1)^x )) =(1−2^(−x) )ξ(x) ⇒  δ(x)= 2^(−x) ξ(x) −(1−2^(−x) )ξ(x)  =(2^(1−x)  −1)ξ(x)  2) δ(1) =Σ_(n=1) ^∞   (((−1)^n )/n) =−ln(2)  3)we have Σ_(n=0) ^∞    (1/((2n+1)^2 )) =(1−2^(−1) )ξ(2)  =(3/4) Σ_(n=1) ^∞  (1/n^2 ) =(3/4) (π^2 /6) = (π^2 /8)  Σ_(n=0) ^∞   (1/((2n+1)^2 )) =(π^2 /8) .  4)δ(3)=(2^(1−3) −1)ξ(3)= ((1/4)−1)ξ(3)  =−(3/4)ξ(3) ⇒  Σ_(n=1) ^∞   (((−1)^n )/n^3 ) =−(3/4) Σ_(n=1) ^∞   (1/n^3 ) .

1)δ(x)=n=11(2n)xn=01(2n+1)x =2xξ(x)n=01(2n+1)xbutwehave ξ(x)=n=11nx=n=11(2n)x+n=01(2n+1)x =2xξ(x)+n=01(2n+1)x n=01(2n+1)x=(12x)ξ(x) δ(x)=2xξ(x)(12x)ξ(x) =(21x1)ξ(x) 2)δ(1)=n=1(1)nn=ln(2) 3)wehaven=01(2n+1)2=(121)ξ(2) =34n=11n2=34π26=π28 n=01(2n+1)2=π28. 4)δ(3)=(2131)ξ(3)=(141)ξ(3) =34ξ(3) n=1(1)nn3=34n=11n3.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com