Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38197 by maxmathsup by imad last updated on 22/Jun/18

find a simple form of L(e^(−(√x)) )  L is laplace transform

$${find}\:{a}\:{simple}\:{form}\:{of}\:{L}\left({e}^{−\sqrt{{x}}} \right)\:\:{L}\:{is}\:{laplace}\:{transform} \\ $$

Commented by math khazana by abdo last updated on 25/Jun/18

L(e^(−(√x)) )= ∫_0 ^∞   f(t)e^(−xt) dt=∫_0 ^∞   e^(−(√t)  −xt)  dt  changement (√t)=u give  L(e^(−(√x)) )= ∫_0 ^∞     e^(−u−xu^2 )  2u du  =−(1/x) ∫_0 ^∞     −2xu e^(−xu^2 )   e^(−u) du   −(1/x){[ e^(−xu^2 )  e^(−u) ]_0 ^(+∞)   +∫_0 ^∞   e^(−u) e^(−xu^2 ) }  =(1/x) −(1/x) ∫_0 ^∞   e^(−(xu^2  +u)) du but  ∫_0 ^∞    e^(−(xu^2  +u)) du=∫_0 ^∞    e^(−{((√x)u)^2  +2 (((√x)u)/(√x))  + (1/x)  −(1/x)}) du  = ∫_0 ^∞   e^(−{ ((√x)u +(1/(√x)))^2  } +(1/x))   du  =e^(1/x)    ∫_0 ^∞    e^(−{ ((√x)u+(1/(√x)))^2 }) du  =e^(1/x)    ∫_(1/(√x)) ^(+∞)     e^(−t^2 )   (dt/(√x))  (  chang.(√x)u +(1/(√x)) =t)  =(e^(1/x) /(√x)) ∫_(1/(√x)) ^(+∞)    e^(−t^2 ) dt ⇒  L(e^(−(√x)) ) =(1/x) −(e^(1/(√x)) /(x(√x)))   ∫_(1/(√x)) ^(+∞)    e^(−t^2 ) dt .

$${L}\left({e}^{−\sqrt{{x}}} \right)=\:\int_{\mathrm{0}} ^{\infty} \:\:{f}\left({t}\right){e}^{−{xt}} {dt}=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\sqrt{{t}}\:\:−{xt}} \:{dt} \\ $$$${changement}\:\sqrt{{t}}={u}\:{give} \\ $$$${L}\left({e}^{−\sqrt{{x}}} \right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:{e}^{−{u}−{xu}^{\mathrm{2}} } \:\mathrm{2}{u}\:{du} \\ $$$$=−\frac{\mathrm{1}}{{x}}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:−\mathrm{2}{xu}\:{e}^{−{xu}^{\mathrm{2}} } \:\:{e}^{−{u}} {du}\: \\ $$$$−\frac{\mathrm{1}}{{x}}\left\{\left[\:{e}^{−{xu}^{\mathrm{2}} } \:{e}^{−{u}} \right]_{\mathrm{0}} ^{+\infty} \:\:+\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{u}} {e}^{−{xu}^{\mathrm{2}} } \right\} \\ $$$$=\frac{\mathrm{1}}{{x}}\:−\frac{\mathrm{1}}{{x}}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left({xu}^{\mathrm{2}} \:+{u}\right)} {du}\:{but} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−\left({xu}^{\mathrm{2}} \:+{u}\right)} {du}=\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−\left\{\left(\sqrt{{x}}{u}\right)^{\mathrm{2}} \:+\mathrm{2}\:\frac{\sqrt{{x}}{u}}{\sqrt{{x}}}\:\:+\:\frac{\mathrm{1}}{{x}}\:\:−\frac{\mathrm{1}}{{x}}\right\}} {du} \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left\{\:\left(\sqrt{{x}}{u}\:+\frac{\mathrm{1}}{\sqrt{{x}}}\right)^{\mathrm{2}} \:\right\}\:+\frac{\mathrm{1}}{{x}}} \:\:{du} \\ $$$$={e}^{\frac{\mathrm{1}}{{x}}} \:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−\left\{\:\left(\sqrt{{x}}{u}+\frac{\mathrm{1}}{\sqrt{{x}}}\right)^{\mathrm{2}} \right\}} {du} \\ $$$$={e}^{\frac{\mathrm{1}}{{x}}} \:\:\:\int_{\frac{\mathrm{1}}{\sqrt{{x}}}} ^{+\infty} \:\:\:\:{e}^{−{t}^{\mathrm{2}} } \:\:\frac{{dt}}{\sqrt{{x}}}\:\:\left(\:\:{chang}.\sqrt{{x}}{u}\:+\frac{\mathrm{1}}{\sqrt{{x}}}\:={t}\right) \\ $$$$=\frac{{e}^{\frac{\mathrm{1}}{{x}}} }{\sqrt{{x}}}\:\int_{\frac{\mathrm{1}}{\sqrt{{x}}}} ^{+\infty} \:\:\:{e}^{−{t}^{\mathrm{2}} } {dt}\:\Rightarrow \\ $$$${L}\left({e}^{−\sqrt{{x}}} \right)\:=\frac{\mathrm{1}}{{x}}\:−\frac{{e}^{\frac{\mathrm{1}}{\sqrt{{x}}}} }{{x}\sqrt{{x}}}\:\:\:\int_{\frac{\mathrm{1}}{\sqrt{{x}}}} ^{+\infty} \:\:\:{e}^{−{t}^{\mathrm{2}} } {dt}\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com