Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38204 by prof Abdo imad last updated on 22/Jun/18

if  (1/(cosx)) =(a_0 /2) +Σ_(n=1) ^∞  a_n cos(nx)  calculate a_0  and a_n

$${if}\:\:\frac{\mathrm{1}}{{cosx}}\:=\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:{a}_{{n}} {cos}\left({nx}\right) \\ $$$${calculate}\:{a}_{\mathrm{0}} \:{and}\:{a}_{{n}} \\ $$

Commented by math khazana by abdo last updated on 26/Jun/18

let?developp at fourier?serie tbe?function  f(x)=(1/(cosx))  (2π periodic even)  f(x)=(a_0 /2) +Σ_(n=1) ^∞ a_n  cos(nx)  a_n =(2/T) ∫_([T]) f(x)cos(nx)dx=(2/(2π)) ∫_(−π) ^π  ((cos(nx))/(cosx))dx ⇒  π a_n = ∫_(−π) ^π   ((cos(nx))/(cosx))dx=Re( ∫_(−π) ^π  (e^(inx) /(cosx))dx)  changement e^(ix) =z give  ∫_(−π) ^π   (e^(inx) /(cosx))dx =∫_(∣z∣=1)    2(z^n /(z+z^(−1) )) (dz/(iz))  = ∫_(∣z∣=1)  ((−2iz^n )/(z^2  +1))dz let ϕ(z)=  ((−2iz^n )/(z^2  +1)) the poles of  ϕ are i and −i ,residus theorem?give  ∫_(∣z∣=1)   ϕ(z)dz =2iπ Res(ϕ,i)  =2iπ  ((−2i.i^n )/(2i)) =−2iπi^n  =−2π i^(n+1)  ⇒  π a_(2n)  =Re( −2π i^(2n+1) )=Re( −2πi(−1)^n )=0  π a_(2n+1) =Re(−2πi^(2n+2) )=Re( 2π(−1)^n )  =2π(−1)^n  ⇒ a_(2n+1) = 2(−1)^n  ⇒a_0 =0 and  (1/(cosx)) = 2Σ_(n=0) ^∞  (−1)^n  cos(2n+1)x

$${let}?{developp}\:{at}\:{fourier}?{serie}\:{tbe}?{function} \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{{cosx}}\:\:\left(\mathrm{2}\pi\:{periodic}\:{even}\right) \\ $$$${f}\left({x}\right)=\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} {a}_{{n}} \:{cos}\left({nx}\right) \\ $$$${a}_{{n}} =\frac{\mathrm{2}}{{T}}\:\int_{\left[{T}\right]} {f}\left({x}\right){cos}\left({nx}\right){dx}=\frac{\mathrm{2}}{\mathrm{2}\pi}\:\int_{−\pi} ^{\pi} \:\frac{{cos}\left({nx}\right)}{{cosx}}{dx}\:\Rightarrow \\ $$$$\pi\:{a}_{{n}} =\:\int_{−\pi} ^{\pi} \:\:\frac{{cos}\left({nx}\right)}{{cosx}}{dx}={Re}\left(\:\int_{−\pi} ^{\pi} \:\frac{{e}^{{inx}} }{{cosx}}{dx}\right) \\ $$$${changement}\:{e}^{{ix}} ={z}\:{give} \\ $$$$\int_{−\pi} ^{\pi} \:\:\frac{{e}^{{inx}} }{{cosx}}{dx}\:=\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\mathrm{2}\frac{{z}^{{n}} }{{z}+{z}^{−\mathrm{1}} }\:\frac{{dz}}{{iz}} \\ $$$$=\:\int_{\mid{z}\mid=\mathrm{1}} \:\frac{−\mathrm{2}{iz}^{{n}} }{{z}^{\mathrm{2}} \:+\mathrm{1}}{dz}\:{let}\:\varphi\left({z}\right)=\:\:\frac{−\mathrm{2}{iz}^{{n}} }{{z}^{\mathrm{2}} \:+\mathrm{1}}\:{the}\:{poles}\:{of} \\ $$$$\varphi\:{are}\:{i}\:{and}\:−{i}\:,{residus}\:{theorem}?{give} \\ $$$$\int_{\mid{z}\mid=\mathrm{1}} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\right) \\ $$$$=\mathrm{2}{i}\pi\:\:\frac{−\mathrm{2}{i}.{i}^{{n}} }{\mathrm{2}{i}}\:=−\mathrm{2}{i}\pi{i}^{{n}} \:=−\mathrm{2}\pi\:{i}^{{n}+\mathrm{1}} \:\Rightarrow \\ $$$$\pi\:{a}_{\mathrm{2}{n}} \:={Re}\left(\:−\mathrm{2}\pi\:{i}^{\mathrm{2}{n}+\mathrm{1}} \right)={Re}\left(\:−\mathrm{2}\pi{i}\left(−\mathrm{1}\right)^{{n}} \right)=\mathrm{0} \\ $$$$\pi\:{a}_{\mathrm{2}{n}+\mathrm{1}} ={Re}\left(−\mathrm{2}\pi{i}^{\mathrm{2}{n}+\mathrm{2}} \right)={Re}\left(\:\mathrm{2}\pi\left(−\mathrm{1}\right)^{{n}} \right) \\ $$$$=\mathrm{2}\pi\left(−\mathrm{1}\right)^{{n}} \:\Rightarrow\:{a}_{\mathrm{2}{n}+\mathrm{1}} =\:\mathrm{2}\left(−\mathrm{1}\right)^{{n}} \:\Rightarrow{a}_{\mathrm{0}} =\mathrm{0}\:{and} \\ $$$$\frac{\mathrm{1}}{{cosx}}\:=\:\mathrm{2}\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{cos}\left(\mathrm{2}{n}+\mathrm{1}\right){x} \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com