Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 38206 by prof Abdo imad last updated on 22/Jun/18

calculate lim_(x→0)  ((x coth(x)−1)/x^2 )

calculatelimx0xcoth(x)1x2

Commented by math khazana by abdo last updated on 25/Jun/18

we have proved that   coth(x)−(1/x) =Σ_(n=1) ^∞    ((2x)/(x^2  +n^2 π^2 ))   (x≠o) ⇒  ((xcoth(x)−1)/x^2 ) =2 Σ_(n=1) ^∞    (1/(x^2  +n^2 π^2 )) ⇒  lim_(x→0)  ((xcoth(x)−1)/x^2 ) = (2/π^2 ) Σ_(n=1) ^∞   (1/n^2 )  =(2/π^2 )  (π^2 /6)  = (1/3)  .

wehaveprovedthatcoth(x)1x=n=12xx2+n2π2(xo)xcoth(x)1x2=2n=11x2+n2π2limx0xcoth(x)1x2=2π2n=11n2=2π2π26=13.

Answered by tanmay.chaudhury50@gmail.com last updated on 23/Jun/18

lim_(x→0) ((x(((e^x +e^(−x) )/(e^x −e^(−x) )))−1)/x^2 )  e^x =1+x+(x^2 /(2!))+(x^3 /(3!))+...  e^(−x) =1−x+(x^2 /(2!))−(x^3 /(3!))+...  x(((e^x +e^(−x) )/(e^x −e^(−x) )))=x(((1+(x^2 /(2!))+(x^4 /(4!))+...)/(x+(x^3 /(3!))+(x^5 /(5!))+...)))=((1+(x^2 /(2!))+...)/(1+(x^2 /(3!))+..))  lim_(x→0) ((((1+(x^2 /(2!))+(x^4 /(4!))+..)/(1+(x^2 /(3!))+(x^4 /(5!))+..)) −1)/x^2 )  =lim_(x→0) ((x^2 ((1/(2!))−(1/(3!)))+x^2 f(x))/x^2 )  when x→0  f(x)→0  =(1/2)−(1/6)=((3−1)/6)=(1/3)ANS

limx0x(ex+exexex)1x2ex=1+x+x22!+x33!+...ex=1x+x22!x33!+...x(ex+exexex)=x(1+x22!+x44!+...x+x33!+x55!+...)=1+x22!+...1+x23!+..limx01+x22!+x44!+..1+x23!+x45!+..1x2=limx0x2(12!13!)+x2f(x)x2whenx0f(x)0=1216=316=13ANS

Terms of Service

Privacy Policy

Contact: info@tinkutara.com