Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 38206 by prof Abdo imad last updated on 22/Jun/18

calculate lim_(x→0)  ((x coth(x)−1)/x^2 )

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{x}\:{coth}\left({x}\right)−\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$

Commented by math khazana by abdo last updated on 25/Jun/18

we have proved that   coth(x)−(1/x) =Σ_(n=1) ^∞    ((2x)/(x^2  +n^2 π^2 ))   (x≠o) ⇒  ((xcoth(x)−1)/x^2 ) =2 Σ_(n=1) ^∞    (1/(x^2  +n^2 π^2 )) ⇒  lim_(x→0)  ((xcoth(x)−1)/x^2 ) = (2/π^2 ) Σ_(n=1) ^∞   (1/n^2 )  =(2/π^2 )  (π^2 /6)  = (1/3)  .

$${we}\:{have}\:{proved}\:{that}\: \\ $$$${coth}\left({x}\right)−\frac{\mathrm{1}}{{x}}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} \:+{n}^{\mathrm{2}} \pi^{\mathrm{2}} }\:\:\:\left({x}\neq{o}\right)\:\Rightarrow \\ $$$$\frac{{xcoth}\left({x}\right)−\mathrm{1}}{{x}^{\mathrm{2}} }\:=\mathrm{2}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} \:+{n}^{\mathrm{2}} \pi^{\mathrm{2}} }\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{xcoth}\left({x}\right)−\mathrm{1}}{{x}^{\mathrm{2}} }\:=\:\frac{\mathrm{2}}{\pi^{\mathrm{2}} }\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2}}{\pi^{\mathrm{2}} }\:\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:\:. \\ $$$$ \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 23/Jun/18

lim_(x→0) ((x(((e^x +e^(−x) )/(e^x −e^(−x) )))−1)/x^2 )  e^x =1+x+(x^2 /(2!))+(x^3 /(3!))+...  e^(−x) =1−x+(x^2 /(2!))−(x^3 /(3!))+...  x(((e^x +e^(−x) )/(e^x −e^(−x) )))=x(((1+(x^2 /(2!))+(x^4 /(4!))+...)/(x+(x^3 /(3!))+(x^5 /(5!))+...)))=((1+(x^2 /(2!))+...)/(1+(x^2 /(3!))+..))  lim_(x→0) ((((1+(x^2 /(2!))+(x^4 /(4!))+..)/(1+(x^2 /(3!))+(x^4 /(5!))+..)) −1)/x^2 )  =lim_(x→0) ((x^2 ((1/(2!))−(1/(3!)))+x^2 f(x))/x^2 )  when x→0  f(x)→0  =(1/2)−(1/6)=((3−1)/6)=(1/3)ANS

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}\left(\frac{{e}^{{x}} +{e}^{−{x}} }{{e}^{{x}} −{e}^{−{x}} }\right)−\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$$${e}^{{x}} =\mathrm{1}+{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+... \\ $$$${e}^{−{x}} =\mathrm{1}−{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+... \\ $$$${x}\left(\frac{{e}^{{x}} +{e}^{−{x}} }{{e}^{{x}} −{e}^{−{x}} }\right)={x}\left(\frac{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{4}} }{\mathrm{4}!}+...}{{x}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}+...}\right)=\frac{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+...}{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{3}!}+..} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{4}} }{\mathrm{4}!}+..}{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{4}} }{\mathrm{5}!}+..}\:−\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}!}−\frac{\mathrm{1}}{\mathrm{3}!}\right)+{x}^{\mathrm{2}} {f}\left({x}\right)}{{x}^{\mathrm{2}} } \\ $$$${when}\:{x}\rightarrow\mathrm{0}\:\:{f}\left({x}\right)\rightarrow\mathrm{0} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{6}}=\frac{\mathrm{3}−\mathrm{1}}{\mathrm{6}}=\frac{\mathrm{1}}{\mathrm{3}}\mathcal{A}{NS} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com