Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38208 by prof Abdo imad last updated on 22/Jun/18

let f(x)=ch(αx)   developp f at fourier serie.  (f 2π periodic even)

letf(x)=ch(αx)developpfatfourierserie.(f2πperiodiceven)

Commented by prof Abdo imad last updated on 24/Jun/18

f(x)=(a_0 /2) +Σ_(n=1) ^∞  a_n cos(nx) with  a_n = (2/T) ∫_([T]) f(x)cos(nx)dx  =(2/(2π)) ∫_(−π) ^π  ch(αx)cos(nx)dx  =(2/π) ∫_0 ^π  ch(αx)cos(nx)dx ⇒  (π/2) a_n = Re( ∫_0 ^π    ((e^(αx)  +e^(−αx) )/2) e^(inx)  dx)=Re(A_n )  A_n = (1/2) ∫_0 ^π   e^((α+in)x) dx +(1/2) ∫_0 ^π   e^((−α +in)x) dx  2A_n = [(1/(α+in)) e^((α+in)x) ]_0 ^π  +[ (1/(−α +in)) e^((−α+in)x) ]_0 ^π   =((e^(απ) (−1)^n −1)/(α+in)) + (1/(−α +in))((e^(−απ) (−1)^n −1)/1)  = (({(−1)^n e^(απ) −1}(α−in))/(α^2  +n^2 ))  −(({(−1)^n e^(−απ) −1}(α+in})/(α^2  +n^2 ))

f(x)=a02+n=1ancos(nx)withan=2T[T]f(x)cos(nx)dx=22πππch(αx)cos(nx)dx=2π0πch(αx)cos(nx)dxπ2an=Re(0πeαx+eαx2einxdx)=Re(An)An=120πe(α+in)xdx+120πe(α+in)xdx2An=[1α+ine(α+in)x]0π+[1α+ine(α+in)x]0π=eαπ(1)n1α+in+1α+ineαπ(1)n11={(1)neαπ1}(αin)α2+n2{(1)neαπ1}(α+in}α2+n2

Commented by prof Abdo imad last updated on 25/Jun/18

2A_n = ((α{ (−1)^n  e^(απ) −1}−in{(−1)^n e^(απ) −1}−α{(−1)^n e^(−απ) −1}−in{(−1)^n  e^(−απ) −1))/(α^2  +n^2 ))  Re( 2A_n ) = ((α(−1)^n  e^(απ) −α −α(−1)^n e^(−απ)  +α)/(α^2  +n^2 ))  =((α(−1)^n ( e^(απ)  −e^(−απ) ))/(α^2  +n^2 )) = ((2α(−1)^n sh(απ))/(α^2  +n^2 )) ⇒  (π/2)a_n = ((α(−1)^n sh(απ))/(α^2  +n^2 )) ⇒  a_n =((2α (−1)^n sh(απ))/(π( α^2  +n^2 ))) ⇒  a_0 = ((2αsh(απ))/(πα^2 )) ⇒ (a_0 /2) =  ((sh(απ))/(απ)) ⇒  ch(αx)= ((sh(πα))/(πα)) +((sh(πα))/π)Σ_(n=1) ^∞     ((2α(−1)^n )/(α^2  +n^2 ))

2An=α{(1)neαπ1}in{(1)neαπ1}α{(1)neαπ1}in{(1)neαπ1)α2+n2Re(2An)=α(1)neαπαα(1)neαπ+αα2+n2=α(1)n(eαπeαπ)α2+n2=2α(1)nsh(απ)α2+n2π2an=α(1)nsh(απ)α2+n2an=2α(1)nsh(απ)π(α2+n2)a0=2αsh(απ)πα2a02=sh(απ)απch(αx)=sh(πα)πα+sh(πα)πn=12α(1)nα2+n2

Commented by prof Abdo imad last updated on 25/Jun/18

ch(αx)=((sh(πα))/(πα)) +2α ((sh(πα))/π)Σ_(n=1) ^∞  (((−1)^n )/(α^2  +n^2 ))cos(nx)

ch(αx)=sh(πα)πα+2αsh(πα)πn=1(1)nα2+n2cos(nx)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com