Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38211 by prof Abdo imad last updated on 22/Jun/18

let x>0 and F(x)= ∫_0 ^(+∞)  ((arctan(xt^2 ))/(1+t^2 ))dt  1) find a simple form of F(x)  2)find the value of ∫_0 ^∞    ((arctan(2t^2 ))/(1+t^2 ))dt  3)find the value of ∫_0 ^∞ ((arctan(3t^2 ))/(1+t^2 ))dt.

$${let}\:{x}>\mathrm{0}\:{and}\:{F}\left({x}\right)=\:\int_{\mathrm{0}} ^{+\infty} \:\frac{{arctan}\left({xt}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$ $$\left.\mathrm{1}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{F}\left({x}\right) \\ $$ $$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left(\mathrm{2}{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$ $$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \frac{{arctan}\left(\mathrm{3}{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}. \\ $$

Commented bymath khazana by abdo last updated on 26/Jun/18

1) we have F(x)=(1/2) ∫_(−∞) ^(+∞)  ((arctan(xt^2 ))/(1+t^2 ))dt but  ∫_(−∞) ^(+∞)   ((arctan(xt^2 ))/(1+t^2 ))dt=  π{ arctan((√(2x)) +1) +arctan((√(2x)) −1) −arctanx}  ⇒  F(x)=(π/2){ arctan((√(2x)) +1)+arctan((√(2x)) −1)−arctan(x)}  2) ∫_0 ^∞    ((arctan(2t^2 ))/(1+t^2 ))dt =F(2)  =(π/2){arctan(3) +arctan(1) −arctan(2)}  =(π/2){ arctan(3)−arctan(2)}+(π^2 /8)  3) ∫_0 ^∞   ((arctan(3t^2 ))/(1+t^2 ))dt =F(3)  =(π/2){ arctan((√6) +1)+arctan((√6)−1)arctan(3)}.

$$\left.\mathrm{1}\right)\:{we}\:{have}\:{F}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{−\infty} ^{+\infty} \:\frac{{arctan}\left({xt}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:{but} \\ $$ $$\int_{−\infty} ^{+\infty} \:\:\frac{{arctan}\left({xt}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}= \\ $$ $$\pi\left\{\:{arctan}\left(\sqrt{\mathrm{2}{x}}\:+\mathrm{1}\right)\:+{arctan}\left(\sqrt{\mathrm{2}{x}}\:−\mathrm{1}\right)\:−{arctanx}\right\} \\ $$ $$\Rightarrow \\ $$ $${F}\left({x}\right)=\frac{\pi}{\mathrm{2}}\left\{\:{arctan}\left(\sqrt{\mathrm{2}{x}}\:+\mathrm{1}\right)+{arctan}\left(\sqrt{\mathrm{2}{x}}\:−\mathrm{1}\right)−{arctan}\left({x}\right)\right\} \\ $$ $$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left(\mathrm{2}{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:={F}\left(\mathrm{2}\right) \\ $$ $$=\frac{\pi}{\mathrm{2}}\left\{{arctan}\left(\mathrm{3}\right)\:+{arctan}\left(\mathrm{1}\right)\:−{arctan}\left(\mathrm{2}\right)\right\} \\ $$ $$=\frac{\pi}{\mathrm{2}}\left\{\:{arctan}\left(\mathrm{3}\right)−{arctan}\left(\mathrm{2}\right)\right\}+\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$ $$\left.\mathrm{3}\right)\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{3}{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:={F}\left(\mathrm{3}\right) \\ $$ $$=\frac{\pi}{\mathrm{2}}\left\{\:{arctan}\left(\sqrt{\mathrm{6}}\:+\mathrm{1}\right)+{arctan}\left(\sqrt{\mathrm{6}}−\mathrm{1}\right){arctan}\left(\mathrm{3}\right)\right\}. \\ $$ $$ \\ $$ $$ \\ $$

Commented bymath khazana by abdo last updated on 26/Jun/18

F(3)=(π/2){ arctan((√6) +1)+arctan((√6) −1)−arctan(3)}

$${F}\left(\mathrm{3}\right)=\frac{\pi}{\mathrm{2}}\left\{\:{arctan}\left(\sqrt{\mathrm{6}}\:+\mathrm{1}\right)+{arctan}\left(\sqrt{\mathrm{6}}\:−\mathrm{1}\right)−{arctan}\left(\mathrm{3}\right)\right\} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com