All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 38211 by prof Abdo imad last updated on 22/Jun/18
letx>0andF(x)=∫0+∞arctan(xt2)1+t2dt 1)findasimpleformofF(x) 2)findthevalueof∫0∞arctan(2t2)1+t2dt 3)findthevalueof∫0∞arctan(3t2)1+t2dt.
Commented bymath khazana by abdo last updated on 26/Jun/18
1)wehaveF(x)=12∫−∞+∞arctan(xt2)1+t2dtbut ∫−∞+∞arctan(xt2)1+t2dt= π{arctan(2x+1)+arctan(2x−1)−arctanx} ⇒ F(x)=π2{arctan(2x+1)+arctan(2x−1)−arctan(x)} 2)∫0∞arctan(2t2)1+t2dt=F(2) =π2{arctan(3)+arctan(1)−arctan(2)} =π2{arctan(3)−arctan(2)}+π28 3)∫0∞arctan(3t2)1+t2dt=F(3) =π2{arctan(6+1)+arctan(6−1)arctan(3)}.
F(3)=π2{arctan(6+1)+arctan(6−1)−arctan(3)}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com