Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 38247 by ajfour last updated on 23/Jun/18

Commented by ajfour last updated on 23/Jun/18

Each of the three  coloured areas  are equal; find (a/R), and (b/R) .

$${Each}\:{of}\:{the}\:{three}\:\:{coloured}\:{areas} \\ $$$${are}\:{equal};\:{find}\:\frac{{a}}{{R}},\:{and}\:\frac{{b}}{{R}}\:. \\ $$

Commented by behi83417@gmail.com last updated on 23/Jun/18

sir Ajfour! please check my comment  on Q#38151.

$${sir}\:{Ajfour}!\:{please}\:{check}\:{my}\:{comment} \\ $$$${on}\:{Q}#\mathrm{38151}. \\ $$

Answered by behi83417@gmail.com last updated on 25/Jun/18

eq. of circle: x^2 +y^2 =R^2   z^2 =R^2 −b^2 ⇒z=(√(R^2 −b^2 ))  S_z =∫_(−b) ^0 [((√(R^2 −x^2 ))−((√(R^2 −b^2 )))]dx=  =[−(x/2)(√(R^2 −x^2 ))+(R^2 /2)sin^(−1) (x/R)−x(√(R^2 −b^2 ))]_(−b) ^0 =  =[(R^2 /2)sin^(−1) (b/R)−((3b)/2)(√(R^2 −b^2 ))]  S_(pink) =((πR^2 )/4)+b^2 +2b(√(R^2 −b^2 ))+2S_z   S_(blue) =((3πR^2 )/4)−b^2 −2b(√(R^2 −b^2 ))−2S_z   ⇒((πR^2 )/2)−2b^2 −4b(√(R^2 −b^2 ))=4S_z   ((πR^2 )/2)−2b^2 −4b(√(R^2 −b^2 ))=2R^2 sin^(−1) (b/R)−6b(√(R^2 −b^2 ))  ((πR^2 )/2)−2b^2 +2b(√(R^2 −b^2 ))−2R^2 sin^(−1) (b/R)=0  π−4(b^2 /R^2 )+4(b/R)(√(1−(b^2 /R^2 )))−4sin^(−1) (b/R)=0  ⇒^((b/R)=m) m^2 −m(√(1−m^2 ))+sin^(−1) m−(π/4)=0  ⇒m=(b/R)=0.71

$${eq}.\:{of}\:{circle}:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$${z}^{\mathrm{2}} ={R}^{\mathrm{2}} −{b}^{\mathrm{2}} \Rightarrow{z}=\sqrt{{R}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$${S}_{{z}} =\underset{−{b}} {\overset{\mathrm{0}} {\int}}\left[\left(\sqrt{{R}^{\mathrm{2}} −{x}^{\mathrm{2}} }−\left(\sqrt{{R}^{\mathrm{2}} −{b}^{\mathrm{2}} }\right)\right]{dx}=\right. \\ $$$$=\left[−\frac{{x}}{\mathrm{2}}\sqrt{{R}^{\mathrm{2}} −{x}^{\mathrm{2}} }+\frac{{R}^{\mathrm{2}} }{\mathrm{2}}{sin}^{−\mathrm{1}} \frac{{x}}{{R}}−{x}\sqrt{{R}^{\mathrm{2}} −{b}^{\mathrm{2}} }\underset{−{b}} {\overset{\mathrm{0}} {\right]}}= \\ $$$$=\left[\frac{{R}^{\mathrm{2}} }{\mathrm{2}}{sin}^{−\mathrm{1}} \frac{{b}}{{R}}−\frac{\mathrm{3}{b}}{\mathrm{2}}\sqrt{{R}^{\mathrm{2}} −{b}^{\mathrm{2}} }\right] \\ $$$${S}_{{pink}} =\frac{\pi{R}^{\mathrm{2}} }{\mathrm{4}}+{b}^{\mathrm{2}} +\mathrm{2}{b}\sqrt{{R}^{\mathrm{2}} −{b}^{\mathrm{2}} }+\mathrm{2}{S}_{{z}} \\ $$$${S}_{{blue}} =\frac{\mathrm{3}\pi{R}^{\mathrm{2}} }{\mathrm{4}}−{b}^{\mathrm{2}} −\mathrm{2}{b}\sqrt{{R}^{\mathrm{2}} −{b}^{\mathrm{2}} }−\mathrm{2}{S}_{{z}} \\ $$$$\Rightarrow\frac{\pi{R}^{\mathrm{2}} }{\mathrm{2}}−\mathrm{2}{b}^{\mathrm{2}} −\mathrm{4}{b}\sqrt{{R}^{\mathrm{2}} −{b}^{\mathrm{2}} }=\mathrm{4}{S}_{{z}} \\ $$$$\frac{\pi{R}^{\mathrm{2}} }{\mathrm{2}}−\mathrm{2}{b}^{\mathrm{2}} −\mathrm{4}{b}\sqrt{{R}^{\mathrm{2}} −{b}^{\mathrm{2}} }=\mathrm{2}{R}^{\mathrm{2}} {sin}^{−\mathrm{1}} \frac{{b}}{{R}}−\mathrm{6}{b}\sqrt{{R}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$$\frac{\pi{R}^{\mathrm{2}} }{\mathrm{2}}−\mathrm{2}{b}^{\mathrm{2}} +\mathrm{2}{b}\sqrt{{R}^{\mathrm{2}} −{b}^{\mathrm{2}} }−\mathrm{2}{R}^{\mathrm{2}} {sin}^{−\mathrm{1}} \frac{{b}}{{R}}=\mathrm{0} \\ $$$$\pi−\mathrm{4}\frac{{b}^{\mathrm{2}} }{{R}^{\mathrm{2}} }+\mathrm{4}\frac{{b}}{{R}}\sqrt{\mathrm{1}−\frac{{b}^{\mathrm{2}} }{{R}^{\mathrm{2}} }}−\mathrm{4}{sin}^{−\mathrm{1}} \frac{{b}}{{R}}=\mathrm{0} \\ $$$$\overset{\frac{{b}}{{R}}={m}} {\Rightarrow}\boldsymbol{{m}}^{\mathrm{2}} −\boldsymbol{{m}}\sqrt{\mathrm{1}−\boldsymbol{{m}}^{\mathrm{2}} }+\boldsymbol{{sin}}^{−\mathrm{1}} \boldsymbol{{m}}−\frac{\pi}{\mathrm{4}}=\mathrm{0} \\ $$$$\Rightarrow\boldsymbol{{m}}=\frac{\boldsymbol{{b}}}{\boldsymbol{{R}}}=\mathrm{0}.\mathrm{71}\: \\ $$

Commented by behi83417@gmail.com last updated on 25/Jun/18

dear master mrW3! thank you for  correction.now it is fixed.

$${dear}\:{master}\:{mrW}\mathrm{3}!\:{thank}\:{you}\:{for} \\ $$$${correction}.{now}\:{it}\:{is}\:{fixed}. \\ $$

Commented by ajfour last updated on 25/Jun/18

Integration is not needed, i  believe, i,ll check with my  answer Sir.

$${Integration}\:{is}\:{not}\:{needed},\:{i} \\ $$$${believe},\:{i},{ll}\:{check}\:{with}\:{my} \\ $$$${answer}\:{Sir}. \\ $$

Commented by MrW3 last updated on 25/Jun/18

To Behi′s father:  pls recheck, your final eqn.   m^2 +m(√(1−m^2 ))+cos^(−1) m−((3π)/4)=0  has no solution.

$${To}\:{Behi}'{s}\:{father}: \\ $$$${pls}\:{recheck},\:{your}\:{final}\:{eqn}.\: \\ $$$$\boldsymbol{{m}}^{\mathrm{2}} +\boldsymbol{{m}}\sqrt{\mathrm{1}−\boldsymbol{{m}}^{\mathrm{2}} }+\boldsymbol{{cos}}^{−\mathrm{1}} \boldsymbol{{m}}−\frac{\mathrm{3}\pi}{\mathrm{4}}=\mathrm{0} \\ $$$${has}\:{no}\:{solution}. \\ $$

Commented by MrW3 last updated on 25/Jun/18

the final eqn. should be:  ⇒m^2 +m(√(1−m^2 ))+sin^(−1) m−(π/4)=0

$${the}\:{final}\:{eqn}.\:{should}\:{be}: \\ $$$$\Rightarrow\boldsymbol{{m}}^{\mathrm{2}} +\boldsymbol{{m}}\sqrt{\mathrm{1}−\boldsymbol{{m}}^{\mathrm{2}} }+\boldsymbol{{sin}}^{−\mathrm{1}} \boldsymbol{{m}}−\frac{\pi}{\mathrm{4}}=\mathrm{0} \\ $$

Answered by MrW3 last updated on 25/Jun/18

a^2 =πR^2   ⇒(a/R)=(√π)≈1.7725    let sin α=(b/R)=λ  A_(red) =b^2 +bRcos α+(R^2 /2)(2α+(π/2))=((πR^2 )/2)  b^2 +bRcos α+(α−(π/4))R^2 =0  let λ=(b/R)⇒α=sin^(−1) λ, cos α=(√(1−λ^2 ))  ⇒λ^2 +λ(√(1−λ^2 ))+sin^(−1) λ=(π/4)  ⇒λ=(b/R)≈0.3412

$${a}^{\mathrm{2}} =\pi{R}^{\mathrm{2}} \\ $$$$\Rightarrow\frac{{a}}{{R}}=\sqrt{\pi}\approx\mathrm{1}.\mathrm{7725} \\ $$$$ \\ $$$${let}\:\mathrm{sin}\:\alpha=\frac{{b}}{{R}}=\lambda \\ $$$${A}_{{red}} ={b}^{\mathrm{2}} +{bR}\mathrm{cos}\:\alpha+\frac{{R}^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{2}\alpha+\frac{\pi}{\mathrm{2}}\right)=\frac{\pi{R}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${b}^{\mathrm{2}} +{bR}\mathrm{cos}\:\alpha+\left(\alpha−\frac{\pi}{\mathrm{4}}\right){R}^{\mathrm{2}} =\mathrm{0} \\ $$$${let}\:\lambda=\frac{{b}}{{R}}\Rightarrow\alpha=\mathrm{sin}^{−\mathrm{1}} \lambda,\:\mathrm{cos}\:\alpha=\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} } \\ $$$$\Rightarrow\lambda^{\mathrm{2}} +\lambda\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }+\mathrm{sin}^{−\mathrm{1}} \lambda=\frac{\pi}{\mathrm{4}} \\ $$$$\Rightarrow\lambda=\frac{{b}}{{R}}\approx\mathrm{0}.\mathrm{3412} \\ $$

Commented by behi83417@gmail.com last updated on 25/Jun/18

dear Ajfour! please recheck my new  edition for your question.thanks.

$${dear}\:{Ajfour}!\:{please}\:{recheck}\:{my}\:{new} \\ $$$${edition}\:{for}\:{your}\:{question}.{thanks}. \\ $$

Commented by ajfour last updated on 25/Jun/18

Thank you both, Sirs.

$${Thank}\:{you}\:{both},\:{Sirs}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com