Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 38286 by mondodotto@gmail.com last updated on 23/Jun/18

(i) given the function f(t)=e^t   and g(t)=lnt  show that f○g(t)=g○f(t)  (ii)if f(t)=at , g(t)=bt^2 +3  (fog)(2)=35 and (fog)(3)=75  find the value of a and b

(i)giventhefunctionf(t)=etandg(t)=lntshowthatfg(t)=gf(t)(ii)iff(t)=at,g(t)=bt2+3(fog)(2)=35and(fog)(3)=75findthevalueofaandb

Commented by math khazana by abdo last updated on 24/Jun/18

1) we have ∀t ∈R gof(t)=ln(e^t )=t  ∀t∈]0,+∞[ fog(t)=e^(ln(t)) =t so we have   fog=gof only on]0,+∞[ !  ii)fog(t)=f(g(t))=f(bt^2 +3)=a(bt^2 +3)  fog(t)=f(g(t))=ag(t)=a(bt^2  +3)    fog(2)=35⇒a(4b+3)=35 ⇒4ab +3a=35  fog(3)=75 ⇒a(9b +3)=75 ⇒9ab +3a=75 ⇒  36ab +27 a= 9.35 and 36ab +12a=4.75 ⇒  15a =9.35 −4.75⇒a = ((9.35)/(15)) −((4.75)/(15))  = ((3.3.5.7)/(3.5)) −((4.3.5.5)/(3.5)) =21 −20=1 ⇒  4b=35−3=32 ⇒b=8 at this case f(t)=t and  g(t)=8t^2  +3

1)wehavetRgof(t)=ln(et)=tt]0,+[fog(t)=eln(t)=tsowehavefog=gofonlyon]0,+[!ii)fog(t)=f(g(t))=f(bt2+3)=a(bt2+3)fog(t)=f(g(t))=ag(t)=a(bt2+3)fog(2)=35a(4b+3)=354ab+3a=35fog(3)=75a(9b+3)=759ab+3a=7536ab+27a=9.35and36ab+12a=4.7515a=9.354.75a=9.35154.7515=3.3.5.73.54.3.5.53.5=2120=14b=353=32b=8atthiscasef(t)=tandg(t)=8t2+3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com