Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38310 by maxmathsup by imad last updated on 23/Jun/18

let f(x)=∫_0 ^(+∞)    ((arctan(xt))/(1+t^2 ))dt  with x≥0  1) calculate f^′ (x) then a simple form of  f(x)  2) calculate ∫_0 ^(+∞)    ((arctant)/(1+t^2 ))dt  3) calculate ∫_0 ^(+∞)   ((arctan(2t))/(1+t^2 ))dt

letf(x)=0+arctan(xt)1+t2dtwithx01)calculatef(x)thenasimpleformoff(x)2)calculate0+arctant1+t2dt3)calculate0+arctan(2t)1+t2dt

Commented by prof Abdo imad last updated on 24/Jun/18

1)we have f^′ (x)=∫_0 ^∞          (t/((1+t^2 )(1+x^2 t^2 )))dt  let decompose F(t)= (t/((1+t^2 )(1+x^2 t^2 )))  F(t)= ((at +b)/(t^2  +1)) +((ct +d)/(x^2 t^2  +1))  F(−t)=−F(t)⇒((−at +b)/(t^2  +1)) +((−ct +d)/(x^2 t^2  +1))  =((−at−b)/(t^2 +1))  +((−ct−d)/(x^2 t^2  +1)) ⇒n=d=0 ⇒  F(t)=  ((at)/(t^2  +1)) +((ct)/(x^2 t^(2 ) +1))  lim_(t→+∞) t F(t)=0=a +(c/x^2 ) ⇒ax^2 +c=0 ⇒  c=−ax^2  ⇒F(t)= ((at)/(t^2  +1)) −x^2   ((at)/(x^2 t^2  +1))  F(1)= (1/(2(1+x^2 ))) =  (a/2) −((ax^2 )/(x^2 +1)) ⇒  (1/2) = ((1+x^2 )/2)a −ax^2  =((1+x^2  −2x^2 )/2)a =((1−x^2 )/2)a ⇒  (1−x^2 )a=1 ⇒a= (1/(1−x^2 ))  if x^2 ≠1 ⇒  F(x)= (1/(1−x^2 ))  (t/(t^2 +1)) −(x^2 /(1−x^2 ))  (t/(x^2 t^2  +1))  =(1/(1−x^2 )){   (t/(t^2 +1)) − ((x^2 t)/(x^2 t^2 +1))} .

1)wehavef(x)=0t(1+t2)(1+x2t2)dtletdecomposeF(t)=t(1+t2)(1+x2t2)F(t)=at+bt2+1+ct+dx2t2+1F(t)=F(t)at+bt2+1+ct+dx2t2+1=atbt2+1+ctdx2t2+1n=d=0F(t)=att2+1+ctx2t2+1limt+tF(t)=0=a+cx2ax2+c=0c=ax2F(t)=att2+1x2atx2t2+1F(1)=12(1+x2)=a2ax2x2+112=1+x22aax2=1+x22x22a=1x22a(1x2)a=1a=11x2ifx21F(x)=11x2tt2+1x21x2tx2t2+1=11x2{tt2+1x2tx2t2+1}.

Commented by abdo.msup.com last updated on 24/Jun/18

f^, (x)=∫_0 ^∞  F(t)dt ⇒(1−x^2 )f^′ (x)  = ∫_0 ^∞    (t/(1+t^2 ))dt  −(1/2)∫_0 ^∞    ((2x^2 t)/(x^2 t^2  +1))dt   =[(1/2)ln∣  ((1+t^2 )/(x^2 t^2 +1))∣]_0 ^(+∞)   =(1/2)ln((1/x^2 ))=−ln∣x∣ ⇒f^′ (x)=−((ln∣x∣)/(1−x^2 ))

f,(x)=0F(t)dt(1x2)f(x)=0t1+t2dt1202x2tx2t2+1dt=[12ln1+t2x2t2+1]0+=12ln(1x2)=lnxf(x)=lnx1x2

Commented by abdo.msup.com last updated on 24/Jun/18

for x>0 we get f^′ (x)=−((ln(x))/(1−x^2 )) ⇒  f(x)= −∫_1 ^x  ((ln(t))/(1−t^2 ))dt +c  c=f(1)= ∫_0 ^∞    ((arctant)/(1+t^2 ))dt changement  t=tanθ give  f(1)= ∫_0 ^(π/2)    (θ/(1+tan^2 θ)) (1+tan^2 θ)dθ  =∫_0 ^(π/2)  θ dθ=[(θ^2 /2)]_0 ^(π/2) =(π^2 /8) ⇒  f(x)=(π^2 /8) −∫_1 ^x   ((ln(t))/(1−t^2 ))dt .

forx>0wegetf(x)=ln(x)1x2f(x)=1xln(t)1t2dt+cc=f(1)=0arctant1+t2dtchangementt=tanθgivef(1)=0π2θ1+tan2θ(1+tan2θ)dθ=0π2θdθ=[θ22]0π2=π28f(x)=π281xln(t)1t2dt.

Commented by prof Abdo imad last updated on 24/Jun/18

2) ∫_0 ^∞   ((arctan(t))/(1+t^2 ))dt =(π^2 /8)  3) ∫_0 ^∞   ((arctan(2t))/(1+t^2 ))dt =f(2)  =(π^2 /8) −∫_1 ^2   ((ln(t))/(1−t^2 ))dt changement  t=1+x give  ∫_1 ^2    ((ln(t))/(1−t^2 ))dt = ∫_0 ^1    ((ln(1+x))/(1−(1+x)^2 ))dx  =∫_0 ^1    ((ln(1+x))/(1−1−x^2 −2x))dx  = −∫_0 ^1    ((ln(1+x))/(x(x+2)))dx  =−∫_0 ^1  ln(1+x)((1/x) −(1/(x+2)))dx  =−(1/2) ∫_0 ^1 ( ((ln(1+x))/x) −((ln(1+x))/(x+2)))dx  =(1/2) ∫_0 ^1  ((ln(1+x))/(x+2))dx −(1/2) ∫_0 ^1   ((ln(1+x))/x)dx but  ln^′ (1+x) = (1/(1+x)) =Σ_(n=0) ^∞ (−1)^n x^n  ⇒  ln(1+x)=Σ_(n=0) ^∞   (((−1)^n )/(n+1))x^(n+1) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)x^n    ⇒∫_0 ^1   ((ln(1+x))/x)dx=∫_0 ^1 (Σ_(n=1) ^∞  (((−1)^(n−1) )/n)x^(n−1) )  =Σ_(n=1) ^∞   (((−1)^(n−1) )/n^ )∫_0 ^1  x^(n−1) dx  =−Σ_(n=1) ^∞    (((−1)^n )/n^2 ) =−(−(π^2 /(12)))=(π^2 /(12))  by parts  ∫_0 ^1 ((ln(1+x))/(x+2))dx  =[ln(1+x)ln(2+x)]_0 ^1   −∫_0 ^1   ((ln(x+2))/(x+1))dx  =ln(2)ln(3)−∫_0 ^1   ((ln(x+2))/(x+1))dx  ∫_0 ^1   ((ln(x+2))/(x+1))dx=∫_0 ^1 (Σ_(n=0) ^∞  (−1)^n x^n )ln(x+2)dx  =Σ_(n=0) ^∞   (−1)^n   ∫_0 ^1  x^n ln(x+2)dx by parts  A_n = ∫_0 ^1  x^n ln(x+2)dx  =[(1/(n+1))x^(n+1) ln(x+2)]_0 ^1  −∫_0 ^1    (x^(n+1) /((n+1)(x+2)))dx  =(1/(n+1)){ln(3) −2^(n+1) ln(2)}−(1/(n+1)) ∫_0 ^1   (x^(n+1) /(x+2))dx  ...be continued...

2)0arctan(t)1+t2dt=π283)0arctan(2t)1+t2dt=f(2)=π2812ln(t)1t2dtchangementt=1+xgive12ln(t)1t2dt=01ln(1+x)1(1+x)2dx=01ln(1+x)11x22xdx=01ln(1+x)x(x+2)dx=01ln(1+x)(1x1x+2)dx=1201(ln(1+x)xln(1+x)x+2)dx=1201ln(1+x)x+2dx1201ln(1+x)xdxbutln(1+x)=11+x=n=0(1)nxnln(1+x)=n=0(1)nn+1xn+1=n=1(1)n1nxn01ln(1+x)xdx=01(n=1(1)n1nxn1)=n=1(1)n1n01xn1dx=n=1(1)nn2=(π212)=π212byparts01ln(1+x)x+2dx=[ln(1+x)ln(2+x)]0101ln(x+2)x+1dx=ln(2)ln(3)01ln(x+2)x+1dx01ln(x+2)x+1dx=01(n=0(1)nxn)ln(x+2)dx=n=0(1)n01xnln(x+2)dxbypartsAn=01xnln(x+2)dx=[1n+1xn+1ln(x+2)]0101xn+1(n+1)(x+2)dx=1n+1{ln(3)2n+1ln(2)}1n+101xn+1x+2dx...becontinued...

Answered by tanmay.chaudhury50@gmail.com last updated on 24/Jun/18

2)∫_0 ^∞ ((tan^(−1) t)/(1+t^2 ))dt  y=tan^(−1) t  tany=t   dt=sec^2 ydy  ∫_0 ^(Π/2) ((y×sec^2 ydy)/(sec^2 y))  =(1/2)×((Π/2))^2 =(Π^2 /8)

2)0tan1t1+t2dty=tan1ttany=tdt=sec2ydy0Π2y×sec2ydysec2y=12×(Π2)2=28

Terms of Service

Privacy Policy

Contact: info@tinkutara.com