Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 38323 by math khazana by abdo last updated on 24/Jun/18

find Σ_(n=1) ^(+∞)    ((4n)/((2n−1)^2 (2n+1)^2 ))

findn=1+4n(2n1)2(2n+1)2

Commented by math khazana by abdo last updated on 25/Jun/18

we see that 2n+1+2n−1=4n so the fraction  F(x)=((4x)/((2x−1)^2 (2x+1)^2 )) have decomposition  at form F(x)= (a/((2x−1)^2 )) + (b/((2x+1)^2 ))  a=lim_(x→(1/2))  (2x−1)^2  F(x)= (2/4) =(1/2)  b=lim_(x→−(1/2)) (2x+1)^2 F(x)=−(1/2)  S_n =Σ_(k=1) ^n  ((4k)/((2k−1)^2 (2k+1)^2 ))  =(1/2)Σ_(k=1) ^n   (1/((2k−1)^2 )) −(1/2)Σ_(k=1) ^n  (1/((2k+1)^2 ))  =−(1/2)Σ_(k=1) ^n  (u_(k+1) −u_k    )  (u_k = (1/((2k−1)^2 )))  =−(1/2){u_(n+1)  −u_1 }=−(1/2){  (1/((2n+1)^2 ))  −1}  = (1/2) −(1/(2(2n+1)^2 )) ⇒lim_(n→+∞)  S_n =(1/2)

weseethat2n+1+2n1=4nsothefractionF(x)=4x(2x1)2(2x+1)2havedecompositionatformF(x)=a(2x1)2+b(2x+1)2a=limx12(2x1)2F(x)=24=12b=limx12(2x+1)2F(x)=12Sn=k=1n4k(2k1)2(2k+1)2=12k=1n1(2k1)212k=1n1(2k+1)2=12k=1n(uk+1uk)(uk=1(2k1)2)=12{un+1u1}=12{1(2n+1)21}=1212(2n+1)2limn+Sn=12

Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jun/18

=(1/2){Σ_(n=1) ^(+∞) (1/((2n−1)^2 ))−(1/((2n+1)^2 ))}  (1/2){((1/1^2 )+(1/3^2 )+(1/5^2 )+....)−((1/3^2 )+(1/5^2 )+(1/7^2 )+...)}  =(1/2) i made a?mistake...  (2n+1)^2 −(2n−1)^2 =4×2n×1=8n  but in problem ((4n)/((2n+1)^2 (2n−1)^2 ))  so(1/2){(1/((2n−1)^2 ))−(1/((2n+1)^2 ))} so (1/2) factor should  be there...  or methld  2s=(1/1^2 )−(1/3^2 )  +(1/3^2 )−(1/5^2 )  ....  ....  +(1/((2n−1)^2 ))−(1/((2n+1)^2 ))  2S_n =1−(1/((2n+1)^2 ))   When n→∞S_n =1  =(1/2)ANS

=12{+n=11(2n1)21(2n+1)2}12{(112+132+152+....)(132+152+172+...)}=12imadea?mistake...(2n+1)2(2n1)2=4×2n×1=8nbutinproblem4n(2n+1)2(2n1)2so12{1(2n1)21(2n+1)2}so12factorshouldbethere...ormethld2s=112132+132152........+1(2n1)21(2n+1)22Sn=11(2n+1)2WhennSn=1=12ANS

Terms of Service

Privacy Policy

Contact: info@tinkutara.com