Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38454 by maxmathsup by imad last updated on 25/Jun/18

let f(x)=∫_0 ^∞    ((1−cos(xt^2 ))/t^2 ) e^(−xt^2 ) dt  with x>0  1) find a simple form of f(x)  2) calculate ∫_0 ^∞    ((1−cos(2t^2 ))/t^2 ) e^(−3t^2 ) dt .

letf(x)=01cos(xt2)t2ext2dtwithx>0 1)findasimpleformoff(x) 2)calculate01cos(2t2)t2e3t2dt.

Commented bymath khazana by abdo last updated on 26/Jun/18

the Q is  f(x)=∫_0 ^∞   ((1−cos(at^2 ))/t^2 ) e^(−xt^2 ) dt

theQisf(x)=01cos(at2)t2ext2dt

Commented byabdo.msup.com last updated on 27/Jun/18

wehave f(x)=∫_0 ^∞  ((1−cos(at^2 ))/t^2 ) e^(−xt^2 ) dt⇒  f^′ (x)= −∫_0 ^∞  (1−cos(at^2 )e^(−xt^2 ) dt  =∫_0 ^∞   cos(at^2 )e^(−xt^2 ) dt  −∫_0 ^∞    e^(−xt^2 ) dt but  ∫_0 ^∞   e^(−xt^2 ) dt =_((√x)t=u) ∫_0 ^∞   e^(−u^2 )  (du/(√x))  =(1/(√x))∫_0 ^∞   e^(−u^2 ) du =(π/(2(√x)))  and  ∫_0 ^∞    cos(at^2 )e^(−xt^2 ) dt=(1/2) ∫_(−∞) ^(+∞)  cos(at^2 )e^(−xt^2 ) dt  =(1/2) Re( ∫_(−∞) ^∞   e^(iat^2 −xt^2 ) dt) but  ∫_(−∞) ^(+∞)   e^((−x+ia)t^2 ) dt =_((√(−x+ia))t=u) ∫_(−∞) ^(+∞)  e^(−u^2 )  (du/(√(−x+ia)))  =((√π)/(√(−x+ia)))  but   −x+ia=(√(x^2  +a^2 )){((−x)/(√(x^2  +a^2 ))) +((ia)/(√(x^2  +a^2 )))}  =r e^(iθ)  ⇒r=(√(x^2 +a^2 ))  and tanθ=−(a/x) ⇒  θ=−arctan((a/x))⇒−x+ia=r e^(−iarctan((a/x)))   ⇒(√(−x+ia))=(x^2  +a^2 )^(1/4)  e^(−(i/2)arctan((a/x))) ⇒  ∫_(−∞) ^(+∞)   e^((−x+ia)t^2 ) dt=(√π) (x^2  +a^2 )^(−(1/4)) e^((i/2)arctan((a/x)))   f^′ (x)=((√π)/2)(x^2  +a^2 )^(−(1/4))  cos((1/2)arctan((a/x)))⇒  f(x)=((√π)/2) ∫_. ^x (t^2  +a^2 )^(−(1/4)) cos((1/2)arctan((a/t)))dt  +c

wehavef(x)=01cos(at2)t2ext2dt f(x)=0(1cos(at2)ext2dt =0cos(at2)ext2dt0ext2dtbut 0ext2dt=xt=u0eu2dux =1x0eu2du=π2xand 0cos(at2)ext2dt=12+cos(at2)ext2dt =12Re(eiat2xt2dt)but +e(x+ia)t2dt=x+iat=u+eu2dux+ia =πx+iabut x+ia=x2+a2{xx2+a2+iax2+a2} =reiθr=x2+a2andtanθ=ax θ=arctan(ax)x+ia=reiarctan(ax) x+ia=(x2+a2)14ei2arctan(ax) +e(x+ia)t2dt=π(x2+a2)14ei2arctan(ax) f(x)=π2(x2+a2)14cos(12arctan(ax)) f(x)=π2.x(t2+a2)14cos(12arctan(at))dt +c

Commented byabdo.msup.com last updated on 27/Jun/18

error at the final lines  f^′ (x)=((√π)/2)(x^2  +a^2 )^(−(1/4))  cos{(1/2)arctan((a/x))}  −(π/(2(√x))) ⇒  f(x)=((√π)/2) ∫_. ^x (t^2 +a^2 )^(−(1/4)) cos((1/2)arctan((a/t)))dt  −π(√x)   +c

erroratthefinallines f(x)=π2(x2+a2)14cos{12arctan(ax)} π2x f(x)=π2.x(t2+a2)14cos(12arctan(at))dt πx+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com