Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38466 by maxmathsup by imad last updated on 25/Jun/18

let a from R  find F_a (t)= ∫_(−∞) ^(+∞)   ((cos(tx))/(a^2  +x^2 ))dx  2) calculate F_2 (3)  and F_3 (2)

letafromRfindFa(t)=+cos(tx)a2+x2dx2)calculateF2(3)andF3(2)

Commented by math khazana by abdo last updated on 27/Jun/18

we have F_a (t)= Re( ∫_(−∞) ^(+∞)   (e^(itx) /(x^2  +a^2 ))dx)  let ϕ(z) = (e^(itz) /(z^(2 ) +a^2 ))  the poles of ϕ are ia and −ia  case1  a>0  ∫_(−∞) ^(+∞)   ϕ(z)dz=2iπ Res(ϕ,ia)=2iπ (e^(it(ia)) /(2ia))  =(π/a) e^(−at)  ⇒ F_a (t)=(π/a) e^(−at)   case2 a<0  ∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ Res(ϕ,−ia) =2iπ (e^(it(−ia)) /(−2ia))  =−(π/a) e^(at)  ⇒ F_a (t)=−(π/a) e^(at)   2) F_2 (3)=(π/2) e^(−6)    and F_3 (2)=(π/3) e^(−6)

wehaveFa(t)=Re(+eitxx2+a2dx)letφ(z)=eitzz2+a2thepolesofφareiaandiacase1a>0+φ(z)dz=2iπRes(φ,ia)=2iπeit(ia)2ia=πaeatFa(t)=πaeatcase2a<0+φ(z)dz=2iπRes(φ,ia)=2iπeit(ia)2ia=πaeatFa(t)=πaeat2)F2(3)=π2e6andF3(2)=π3e6

Terms of Service

Privacy Policy

Contact: info@tinkutara.com