All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 38468 by maxmathsup by imad last updated on 25/Jun/18
calculate∫−∞+∞sin(2x)sh(3x)4+x2dx
Commented by math khazana by abdo last updated on 27/Jun/18
I=Im(∫−∞+∞sh(3x)eix4+x2dx)letA=∫−∞+∞sh(3x)eix4+x2dx=12∫−∞+∞(e3x−e−3x)eixx2+4dx=12∫−∞+∞e(3+i)x−e(−3+i)xx2+4dxletφ(z)=e(3+i)z−e(−3+i)zz2+4thepolesofφare2iand−2i∫−∞+∞φ(z)dz=2iπRes(φ,2i)butφ(z)=e(3+i)z−e(−3+i)z(z−2i)(z+2i)⇒Res(φ,2i)=e(3+i)(2i)−e(−3+i)(2i)4i=e−2+6i−e−2−6i4i=e−24i2isin(6)=e−22sin(6)∫−∞+∞φ(z)dz=2iπe−22sin(6)=iπe−2sin(6)⇒A=iπ2e−2sin(6)butI=Im(A)⇒I=π2e2sin(6).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com