Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38468 by maxmathsup by imad last updated on 25/Jun/18

calculate ∫_(−∞) ^(+∞)    ((sin(2x)sh(3x))/(4+x^2 ))dx

calculate+sin(2x)sh(3x)4+x2dx

Commented by math khazana by abdo last updated on 27/Jun/18

I = Im( ∫_(−∞) ^(+∞)   ((sh(3x)e^(ix) )/(4+x^2 ))dx) let  A= ∫_(−∞) ^(+∞)   ((sh(3x) e^(ix) )/(4+x^2 ))dx  =(1/2) ∫_(−∞) ^(+∞)   (((e^(3x)  −e^(−3x) )e^(ix) )/(x^2 +4))dx  =(1/2) ∫_(−∞) ^(+∞)    ((e^((3+i)x)  −e^((−3+i)x) )/(x^2  +4))dx  let ϕ(z)= ((e^((3+i)z)  −e^((−3+i)z) )/(z^2  +4)) the poles of ϕ are  2i and −2i   ∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ Res(ϕ,2i) but  ϕ(z)=((e^((3+i)z)  −e^((−3+i)z) )/((z−2i)(z+2i))) ⇒  Res(ϕ,2i)= ((e^((3+i)(2i))  −e^((−3+i)(2i)) )/(4i))  =((e^(−2 +6i)  −e^(−2−6i) )/(4i)) =(e^(−2) /(4i)) 2i sin(6) =(e^(−2) /2)sin(6)  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ (e^(−2) /2) sin(6)  =iπ e^(−2)  sin(6) ⇒A=i(π/2)e^(−2) sin(6) but   I =Im(A) ⇒I = (π/(2e^2 ))sin(6) .

I=Im(+sh(3x)eix4+x2dx)letA=+sh(3x)eix4+x2dx=12+(e3xe3x)eixx2+4dx=12+e(3+i)xe(3+i)xx2+4dxletφ(z)=e(3+i)ze(3+i)zz2+4thepolesofφare2iand2i+φ(z)dz=2iπRes(φ,2i)butφ(z)=e(3+i)ze(3+i)z(z2i)(z+2i)Res(φ,2i)=e(3+i)(2i)e(3+i)(2i)4i=e2+6ie26i4i=e24i2isin(6)=e22sin(6)+φ(z)dz=2iπe22sin(6)=iπe2sin(6)A=iπ2e2sin(6)butI=Im(A)I=π2e2sin(6).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com