All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 38521 by math khazana by abdo last updated on 26/Jun/18
letf(x)=2x+1(x−2)(x2+x+1)1)calculatef(n)(x)2)findf(n)(0)3)developpfatintegrserie.(
Commented by abdo mathsup 649 cc last updated on 28/Jun/18
1)letdrcomposefinsideCf(x)=ax−2+bx−j+cx−j−withj=ei2π3f(x)=2x+1(x−2)(x−j)(x−j−)a=limx→2(x−2)f(x)=57b=limx→j(x−j)f(x)=2j+1(j−2)2i32=2j+1i3(j−2)c=limx→j−(x−j−)f(x)=2j−+1(j−−2)(−2i32)=−2j−+1i3(j−−2)⇒f(x)=57(x−2)+2j+1i3(j−2)(x−j)−2j−+1i3(j−−2)(x−j−)⇒f(n)(x)=57(−1)nn!(x−2)n+1+2j+1i3(j−2)(−1)nn!(x−j)n+1−2j−+1i3(j−−2)(−1)nn!(x−j−)n+1but2)f(n)(0)=5(−1)nn!7(−2)n+1+2j+1i3(j−2)(−1)nn!(−j)n+1−2j−+1i3(j−−2)(−1)nn!(−j−)n+1=−57n!2n+1−2j+1i3(j−2)n!jn+1+2j−+1i3(j−−2)n!(j−)n+13)f(x)=∑n=0∞f(n)(0)n!xn=∑n=0∞{−57.2n+1−2j+1i3(j−2)jn+1+2j−+1i3(j−−2)(j−)n+1}xn
Terms of Service
Privacy Policy
Contact: info@tinkutara.com