Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 38521 by math khazana by abdo last updated on 26/Jun/18

letf(x) = ((2x+1)/((x−2)(x^2  +x+1)))  1) calculate f^((n)) (x)  2) find f^((n)) (0)  3) developp f at integr serie.  (

letf(x)=2x+1(x2)(x2+x+1)1)calculatef(n)(x)2)findf(n)(0)3)developpfatintegrserie.(

Commented by abdo mathsup 649 cc last updated on 28/Jun/18

1) let drcompose f inside C  f(x)= (a/(x−2)) +(b/(x−j)) +(c/(x−j^− ))  withj=e^((i2π)/3)   f(x)=((2x+1)/((x−2)(x−j)(x−j^− )))  a =lim_(x→2) (x−2)f(x)= (5/7)  b=lim_(x→j)  (x−j)f(x)= ((2j+1)/((j−2)2i((√3)/2))) =((2j+1)/(i(√3)(j−2)))  c=lim_(x→j^− ) (x−j^− )f(x)= ((2j^− +1)/((j^− −2)(−2i((√3)/2))))  =−((2j^−  +1)/(i(√3)(j^− −2)))  ⇒f(x)= (5/(7(x−2))) +((2j+1)/(i(√3)(j−2)(x−j)))  −((2j^(− )  +1)/(i(√3)(j^− −2)(x−j^− ))) ⇒  f^((n)) (x) = (5/7) (((−1)^n n!)/((x−2)^(n+1) ))  +((2j+1)/(i(√3)(j−2))) (((−1)^n n!)/((x−j)^(n+1) ))  −((2j^−  +1)/(i(√3)(j^− −2))) (((−1)^n n!)/((x−j^− )^(n+1) )) but  2)f^((n)) (0) = ((5(−1)^n n!)/(7(−2)^(n+1) )) +((2j+1)/(i(√3)(j−2))) (((−1)^n n!)/((−j)^(n+1) ))  −((2j^− +1)/(i(√3)(j^− −2)))(((−1)^n n!)/((−j^− )^(n+1) ))   =−(5/7) ((n!)/2^(n+1) ) −((2j+1)/(i(√3)(j−2))) ((n!)/j^(n+1) ) +((2j^−  +1)/(i(√3)(j^− −2))) ((n!)/((j^− )^(n+1) ))  3) f(x)=Σ_(n=0) ^∞   ((f^((n)) (0))/(n!)) x^n   =Σ_(n=0) ^∞   { −(5/(7 .2^(n+1) )) −((2j+1)/(i(√3)(j−2)j^(n+1) )) +((2j^−  +1)/(i(√3)(j^− −2)(j^− )^(n+1) ))}x^n

1)letdrcomposefinsideCf(x)=ax2+bxj+cxjwithj=ei2π3f(x)=2x+1(x2)(xj)(xj)a=limx2(x2)f(x)=57b=limxj(xj)f(x)=2j+1(j2)2i32=2j+1i3(j2)c=limxj(xj)f(x)=2j+1(j2)(2i32)=2j+1i3(j2)f(x)=57(x2)+2j+1i3(j2)(xj)2j+1i3(j2)(xj)f(n)(x)=57(1)nn!(x2)n+1+2j+1i3(j2)(1)nn!(xj)n+12j+1i3(j2)(1)nn!(xj)n+1but2)f(n)(0)=5(1)nn!7(2)n+1+2j+1i3(j2)(1)nn!(j)n+12j+1i3(j2)(1)nn!(j)n+1=57n!2n+12j+1i3(j2)n!jn+1+2j+1i3(j2)n!(j)n+13)f(x)=n=0f(n)(0)n!xn=n=0{57.2n+12j+1i3(j2)jn+1+2j+1i3(j2)(j)n+1}xn

Terms of Service

Privacy Policy

Contact: info@tinkutara.com