Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 38613 by rish@bh last updated on 27/Jun/18

The radius of the largest circle which  passes through (1,2) and (3,4) and lies  completely in the first quadrant is  A) 3  B) 2  C) (√6)  D) 2(√5)  I got the answer as 2 but the answer   given is 2(√5).

$$\mathrm{The}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{circle}\:\mathrm{which} \\ $$$$\mathrm{passes}\:\mathrm{through}\:\left(\mathrm{1},\mathrm{2}\right)\:\mathrm{and}\:\left(\mathrm{3},\mathrm{4}\right)\:\mathrm{and}\:\mathrm{lies} \\ $$$$\mathrm{completely}\:\mathrm{in}\:\mathrm{the}\:\mathrm{first}\:\mathrm{quadrant}\:\mathrm{is} \\ $$$$\left.\mathrm{A}\right)\:\mathrm{3} \\ $$$$\left.\mathrm{B}\right)\:\mathrm{2} \\ $$$$\left.\mathrm{C}\right)\:\sqrt{\mathrm{6}} \\ $$$$\left.\mathrm{D}\right)\:\mathrm{2}\sqrt{\mathrm{5}} \\ $$$$\mathrm{I}\:\mathrm{got}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{as}\:\mathrm{2}\:\mathrm{but}\:\mathrm{the}\:\mathrm{answer}\: \\ $$$$\mathrm{given}\:\mathrm{is}\:\mathrm{2}\sqrt{\mathrm{5}}. \\ $$

Answered by ajfour last updated on 27/Jun/18

The larger circle′s major segment  lies below the line joining the  two points.The circle then touches  the x-axis. Therefore let  the eq. of ⊥ bisector of the  chord from (1,2) to (3,4) is    y−3=2−x   ⇒    x+y =5  let center of circle be  (h,r)  where r is its radius.   centre lies on x+y=5   ⇒     h+r =5  Further      (h−1)^2 +(r−2)^2 =r^2   ⇒  (4−r)^2 +(r−2)^2 = r^2   or     r^2 −12r+20 =0          (r−6)^2 =16   ⇒  r = 6±4            r=10, 2  as  h > 0  ⇒   r = 2 .

$${The}\:{larger}\:{circle}'{s}\:{major}\:{segment} \\ $$$${lies}\:{below}\:{the}\:{line}\:{joining}\:{the} \\ $$$${two}\:{points}.{The}\:{circle}\:{then}\:{touches} \\ $$$${the}\:{x}-{axis}.\:{Therefore}\:{let} \\ $$$${the}\:{eq}.\:{of}\:\bot\:{bisector}\:{of}\:{the} \\ $$$${chord}\:{from}\:\left(\mathrm{1},\mathrm{2}\right)\:{to}\:\left(\mathrm{3},\mathrm{4}\right)\:{is} \\ $$$$\:\:{y}−\mathrm{3}=\mathrm{2}−{x}\:\:\:\Rightarrow\:\:\:\:{x}+{y}\:=\mathrm{5} \\ $$$${let}\:{center}\:{of}\:{circle}\:{be}\:\:\left({h},{r}\right) \\ $$$${where}\:{r}\:{is}\:{its}\:{radius}. \\ $$$$\:{centre}\:{lies}\:{on}\:{x}+{y}=\mathrm{5}\: \\ $$$$\Rightarrow\:\:\:\:\:{h}+{r}\:=\mathrm{5} \\ $$$${Further} \\ $$$$\:\:\:\:\left({h}−\mathrm{1}\right)^{\mathrm{2}} +\left({r}−\mathrm{2}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\left(\mathrm{4}−{r}\right)^{\mathrm{2}} +\left({r}−\mathrm{2}\right)^{\mathrm{2}} =\:{r}^{\mathrm{2}} \\ $$$${or}\:\:\:\:\:{r}^{\mathrm{2}} −\mathrm{12}{r}+\mathrm{20}\:=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\left({r}−\mathrm{6}\right)^{\mathrm{2}} =\mathrm{16}\:\:\:\Rightarrow\:\:{r}\:=\:\mathrm{6}\pm\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\:\:\:{r}=\mathrm{10},\:\mathrm{2} \\ $$$${as}\:\:{h}\:>\:\mathrm{0}\:\:\Rightarrow\:\:\:{r}\:=\:\mathrm{2}\:. \\ $$

Commented by rish@bh last updated on 27/Jun/18

Thank you

$$\mathrm{Thank}\:\mathrm{you} \\ $$

Commented by prakash jain last updated on 28/Jun/18

if circle touches y−axis  (h−1)^2 +(r−2)^2 =h^2   (h−1)^2 +(3−h)^2 =h^2   h^2 −8h+10=0  h=((8±(√(24)))/2)=4±2(√3)  r=1∓2(√3)  r=1+2(√3),h=4−2(√3)  possible center for touch y−axis  (4+2(√3),1−2(√3))  (4−2(√3),1+2(√3))  radius=4−2(√3)

$${if}\:{circle}\:{touches}\:{y}−{axis} \\ $$$$\left({h}−\mathrm{1}\right)^{\mathrm{2}} +\left({r}−\mathrm{2}\right)^{\mathrm{2}} ={h}^{\mathrm{2}} \\ $$$$\left({h}−\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{3}−{h}\right)^{\mathrm{2}} ={h}^{\mathrm{2}} \\ $$$${h}^{\mathrm{2}} −\mathrm{8}{h}+\mathrm{10}=\mathrm{0} \\ $$$${h}=\frac{\mathrm{8}\pm\sqrt{\mathrm{24}}}{\mathrm{2}}=\mathrm{4}\pm\mathrm{2}\sqrt{\mathrm{3}} \\ $$$${r}=\mathrm{1}\mp\mathrm{2}\sqrt{\mathrm{3}} \\ $$$${r}=\mathrm{1}+\mathrm{2}\sqrt{\mathrm{3}},{h}=\mathrm{4}−\mathrm{2}\sqrt{\mathrm{3}} \\ $$$${possible}\:{center}\:{for}\:{touch}\:{y}−{axis} \\ $$$$\left(\mathrm{4}+\mathrm{2}\sqrt{\mathrm{3}},\mathrm{1}−\mathrm{2}\sqrt{\mathrm{3}}\right) \\ $$$$\left(\mathrm{4}−\mathrm{2}\sqrt{\mathrm{3}},\mathrm{1}+\mathrm{2}\sqrt{\mathrm{3}}\right) \\ $$$$\mathrm{radius}=\mathrm{4}−\mathrm{2}\sqrt{\mathrm{3}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com