Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 38643 by maxmathsup by imad last updated on 27/Jun/18

calculate lim_(n→+∞)    ((1+2+3+...+n)/(1+2^4  +3^4  +...+n^4 ))

$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:\:\frac{\mathrm{1}+\mathrm{2}+\mathrm{3}+...+{n}}{\mathrm{1}+\mathrm{2}^{\mathrm{4}} \:+\mathrm{3}^{\mathrm{4}} \:+...+{n}^{\mathrm{4}} } \\ $$

Commented by abdo mathsup 649 cc last updated on 28/Jun/18

the Q is find Σ_(n=1) ^∞   ((1+2+3+...+n)/(1+2^(4 )  +3^4 +...+n^4 ))

$${the}\:{Q}\:{is}\:{find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}+\mathrm{2}+\mathrm{3}+...+{n}}{\mathrm{1}+\mathrm{2}^{\mathrm{4}\:} \:+\mathrm{3}^{\mathrm{4}} +...+{n}^{\mathrm{4}} } \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 28/Jun/18

Commented by tanmay.chaudhury50@gmail.com last updated on 28/Jun/18

Commented by tanmay.chaudhury50@gmail.com last updated on 28/Jun/18

pls post the source of the question and validity

$${pls}\:{post}\:{the}\:{source}\:{of}\:{the}\:{question}\:{and}\:{validity} \\ $$

Answered by ajfour last updated on 28/Jun/18

Σ_(r=1) ^n r^4  = Σ_(r=1) ^n r(r+1)(r+2)(r+3)               −6Σ_(r=1) ^n r^3 −11Σ_(r=1) ^n r^2 −6Σ_(r=1) ^n r             =((n(n+1)(n+2)(n+3)(n+4))/5)         −((6n^2 (n+1)^2 )/4)−((11n(n+1)(2n+1))/6)          −((6n(n+1))/2)       = ((n(n+1))/(30)){6(n+2)(n+3)(n+4)      −45n(n+1)−55(2n+1)−90}     =((n(n+1))/(30)){6n^3 +9n^2 +6n−1}  So lim_(n→∞) (((Σ_(r=1) ^n r)^(5/2) )/(Σ_(r=1) ^n r^4 )) = lim_(n→∞)  (([((n(n+1))/2)]^(5/2) )/([((n(n+1))/(30))(6n^3 +9n^2 +6n−1)]))                     =((((1/2))^(5/2) )/(((1/(30)))×6)) = (5/(4(√2))) .

$$\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{r}^{\mathrm{4}} \:=\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{r}\left({r}+\mathrm{1}\right)\left({r}+\mathrm{2}\right)\left({r}+\mathrm{3}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{6}\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{r}^{\mathrm{3}} −\mathrm{11}\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{r}^{\mathrm{2}} −\mathrm{6}\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{r} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\frac{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\left({n}+\mathrm{3}\right)\left({n}+\mathrm{4}\right)}{\mathrm{5}} \\ $$$$\:\:\:\:\:\:\:−\frac{\mathrm{6}{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}}−\frac{\mathrm{11}{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$$$\:\:\:\:\:\:\:\:−\frac{\mathrm{6}{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\:\:\:\:\:=\:\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{30}}\left\{\mathrm{6}\left({n}+\mathrm{2}\right)\left({n}+\mathrm{3}\right)\left({n}+\mathrm{4}\right)\right. \\ $$$$\left.\:\:\:\:−\mathrm{45}{n}\left({n}+\mathrm{1}\right)−\mathrm{55}\left(\mathrm{2}{n}+\mathrm{1}\right)−\mathrm{90}\right\} \\ $$$$\:\:\:=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{30}}\left\{\mathrm{6}{n}^{\mathrm{3}} +\mathrm{9}{n}^{\mathrm{2}} +\mathrm{6}{n}−\mathrm{1}\right\} \\ $$$${So}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\left(\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{r}\right)^{\mathrm{5}/\mathrm{2}} }{\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{r}^{\mathrm{4}} }\:=\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\left[\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\right]^{\mathrm{5}/\mathrm{2}} }{\left[\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{30}}\left(\mathrm{6}{n}^{\mathrm{3}} +\mathrm{9}{n}^{\mathrm{2}} +\mathrm{6}{n}−\mathrm{1}\right)\right]} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{5}/\mathrm{2}} }{\left(\frac{\mathrm{1}}{\mathrm{30}}\right)×\mathrm{6}}\:=\:\frac{\mathrm{5}}{\mathrm{4}\sqrt{\mathrm{2}}}\:. \\ $$$$ \\ $$$$ \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 28/Jun/18

why (Σ_(r=1) ^n r)^(5/2)

$${why}\:\left(\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{r}\right)^{\frac{\mathrm{5}}{\mathrm{2}}} \\ $$

Commented by ajfour last updated on 28/Jun/18

I did not like the obvious answer  to the original question, so i  changed the question !(⌣^(°^�        °^�  ) )!

$${I}\:{did}\:{not}\:{like}\:{the}\:{obvious}\:{answer} \\ $$$${to}\:{the}\:{original}\:{question},\:{so}\:{i} \\ $$$${changed}\:{the}\:{question}\:!\left(\overset{\hat {°}\:\:\:\:\:\:\:\hat {°}\:} {\smile}\right)! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com