Question and Answers Forum

All Questions      Topic List

Electrostatics Questions

Previous in All Question      Next in All Question      

Previous in Electrostatics      Next in Electrostatics      

Question Number 38675 by rahul 19 last updated on 28/Jun/18

Commented by tanmay.chaudhury50@gmail.com last updated on 29/Jun/18

A→Q,B→Q

$${A}\rightarrow{Q},{B}\rightarrow{Q} \\ $$

Commented by rahul 19 last updated on 30/Jun/18

Correct Ans. is   A→R , B→Q , C→Q , D→P

$$\mathrm{Correct}\:\mathrm{Ans}.\:\mathrm{is}\: \\ $$$$\mathrm{A}\rightarrow\mathrm{R}\:,\:\mathrm{B}\rightarrow\mathrm{Q}\:,\:\mathrm{C}\rightarrow\mathrm{Q}\:,\:\mathrm{D}\rightarrow\mathrm{P}\: \\ $$

Commented by rahul 19 last updated on 30/Jun/18

(MrW3 , Ajfour) sir pls help us ......

$$\left(\mathrm{MrW3}\:,\:\mathrm{Ajfour}\right)\:\mathrm{sir}\:\mathrm{pls}\:\mathrm{help}\:\mathrm{us}\:...... \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 30/Jun/18

q=q_0 (1−e^(−(t/(CR))) )=  A)energy=(1/2)(q^2 /c)  B)heat=joules heat =((i^2 Rt)/j)  i=(dq/dt)=q_0 (0−e^((−t)/(cR)) ×((−1)/(cR)))=q_0 ((1/(cR))e^((−t)/(cR)) )  heat=(q_0 ^2 /(c^2 R^2 ))e^(−2(t/(cR))) ×R×(t/j)  C)energy_ =(1/2)C×(pd)^2 }  =(1/2)×c((q^2 /c^2 ))=(1/(2c))q_0 ^2 ×(1−e^((−t)/(cR)) )^2   D)w=(1/2)×(q^2 /c)=((q_0 ^2 (1−e^((−t)/(cR)) )^7 )/(2c))    energy=(q^2 /(2c))       q=q_o (1−e^(−(t/(cR))) )≈{1−(1−(t/(cR)))}  so  q≈q_0 (t/(cR))  energy=((q_0 ^2 t^2 )/(2c^3 R^2 ))  so the graph alike y=x^2

$${q}={q}_{\mathrm{0}} \left(\mathrm{1}−{e}^{−\frac{{t}}{{CR}}} \right)= \\ $$$$\left.{A}\right){energy}=\frac{\mathrm{1}}{\mathrm{2}}\frac{{q}^{\mathrm{2}} }{{c}} \\ $$$$\left.{B}\right){heat}={joules}\:{heat}\:=\frac{{i}^{\mathrm{2}} {Rt}}{{j}} \\ $$$${i}=\frac{{dq}}{{dt}}={q}_{\mathrm{0}} \left(\mathrm{0}−{e}^{\frac{−{t}}{{cR}}} ×\frac{−\mathrm{1}}{{cR}}\right)={q}_{\mathrm{0}} \left(\frac{\mathrm{1}}{{cR}}{e}^{\frac{−{t}}{{cR}}} \right) \\ $$$${heat}=\frac{{q}_{\mathrm{0}} ^{\mathrm{2}} }{{c}^{\mathrm{2}} {R}^{\mathrm{2}} }{e}^{−\mathrm{2}\frac{{t}}{{cR}}} ×{R}×\frac{{t}}{{j}} \\ $$$$\left.{C}\left.\right){energy}_{} =\frac{\mathrm{1}}{\mathrm{2}}{C}×\left({pd}\right)^{\mathrm{2}} \right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×{c}\left(\frac{{q}^{\mathrm{2}} }{{c}^{\mathrm{2}} }\right)=\frac{\mathrm{1}}{\mathrm{2}{c}}{q}_{\mathrm{0}} ^{\mathrm{2}} ×\left(\mathrm{1}−{e}^{\frac{−{t}}{{cR}}} \right)^{\mathrm{2}} \\ $$$$\left.{D}\right){w}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{{q}^{\mathrm{2}} }{{c}}=\frac{{q}_{\mathrm{0}} ^{\mathrm{2}} \left(\mathrm{1}−{e}^{\frac{−{t}}{{cR}}} \right)^{\mathrm{7}} }{\mathrm{2}{c}} \\ $$$$ \\ $$$${energy}=\frac{{q}^{\mathrm{2}} }{\mathrm{2}{c}}\:\:\:\:\:\:\:{q}={q}_{{o}} \left(\mathrm{1}−{e}^{−\frac{{t}}{{cR}}} \right)\approx\left\{\mathrm{1}−\left(\mathrm{1}−\frac{{t}}{{cR}}\right)\right\} \\ $$$${so}\:\:{q}\approx{q}_{\mathrm{0}} \frac{{t}}{{cR}} \\ $$$${energy}=\frac{{q}_{\mathrm{0}} ^{\mathrm{2}} {t}^{\mathrm{2}} }{\mathrm{2}{c}^{\mathrm{3}} {R}^{\mathrm{2}} }\:\:{so}\:{the}\:{graph}\:{alike}\:{y}={x}^{\mathrm{2}} \\ $$$$ \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 29/Jun/18

i am tryiny to corelate with graph

$${i}\:{am}\:{tryiny}\:{to}\:{corelate}\:{with}\:{graph} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com