Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38706 by abdo mathsup 649 cc last updated on 28/Jun/18

let f(x)= ∫_0 ^(π/2)     (dθ/(1+x e^(iθ) ))     with ∣x∣<1  1) developp f(x) at integr serie  2) calculate f(x)  3) find the value of  ∫_0 ^(π/2)    (e^(iθ) /((1+x e^(iθ) )^2 ))  4) calculate ∫_0 ^(π/2)      (dθ/(2 +e^(iθ) ))

letf(x)=0π2dθ1+xeiθwithx∣<1 1)developpf(x)atintegrserie 2)calculatef(x) 3)findthevalueof0π2eiθ(1+xeiθ)2 4)calculate0π2dθ2+eiθ

Commented bymaxmathsup by imad last updated on 30/Jun/18

2) we have f(x) = Σ_(n=0) ^∞   (((−1)^n )/(in)) e^((inπ)/2) x^n   −Σ_(n=0) ^∞   (((−1)^n )/(in)) x^n   1) f(x) = ∫_0 ^(π/2) (Σ_(n=0) ^∞  (−1)^n  x^n  e^(inθ) )dθ = Σ_(n=0) ^∞  (−1)^n x^n  ∫_0 ^(π/2)  e^(inθ)  dθ  =(π/2)  + Σ_(n=1) ^∞  (−1)^n  x^n  [(1/(in)) e^(inθ) ]_0 ^(π/2)   =(π/2) −i Σ_(n=1) ^∞  (−1)^n x^n ( e^((inπ)/2)  −1)  f(x) =(π/2) −i Σ_(n=1) ^∞ (−1)^n ( e^((inπ)/2)  −1)x^(n )

2)wehavef(x)=n=0(1)nineinπ2xnn=0(1)ninxn 1)f(x)=0π2(n=0(1)nxneinθ)dθ=n=0(1)nxn0π2einθdθ =π2+n=1(1)nxn[1ineinθ]0π2 =π2in=1(1)nxn(einπ21) f(x)=π2in=1(1)n(einπ21)xn

Commented bymaxmathsup by imad last updated on 30/Jun/18

2) we have f(x) =(π/2) −i Σ_(n=1) ^∞ (−1)^n  e^((inπ)/2)  x^n   +i Σ_(n=1) ^∞  (−1)^n  x^n   but  Σ_(n=1) ^∞  (−1)^n  x^n  −1= (1/(1+x)) −1 = ((−x)/(1+x))  Σ_(n=1) ^∞  (−1)^n  e^((inπ)/2)  x^n = Σ_(n=0) ^∞  (−e^((iπ)/2) x)^n  −1   = (1/(1+e^((iπ)/2) x)) −1 =  (1/(1+ix)) −1 =  ((1−ix)/(1+x^2 )) −1 = ((−x^2 )/(1+x^2 )) −i(x/(1+x^2 )) ⇒  f(x) = (π/2) −i( ((−x^2 )/(1+x^2 )) −((ix)/(1+x^2 ))) −((ix)/(1+x))  =(π/2) −(x/(1+x^2 )) +i{ (x^2 /(1+x^2 )) −(x/(1+x))}

2)wehavef(x)=π2in=1(1)neinπ2xn+in=1(1)nxnbut n=1(1)nxn1=11+x1=x1+x n=1(1)neinπ2xn=n=0(eiπ2x)n1 =11+eiπ2x1=11+ix1=1ix1+x21=x21+x2ix1+x2 f(x)=π2i(x21+x2ix1+x2)ix1+x =π2x1+x2+i{x21+x2x1+x}

Commented bymaxmathsup by imad last updated on 30/Jun/18

3) we have f(x) =∫_0 ^(π/2)    (dθ/(1+x cosθ)) ⇒f^′ (x) = ∫_0 ^(π/2)   ((−sinθ)/((1+cosθ)^2 )) dθ ⇒  ∫_0 ^(π/2)   ((sinθ)/((1+cosθ)^2 ))dθ =−f^′ (x) .

3)wehavef(x)=0π2dθ1+xcosθf(x)=0π2sinθ(1+cosθ)2dθ 0π2sinθ(1+cosθ)2dθ=f(x).

Commented bymaxmathsup by imad last updated on 30/Jun/18

4) let I  =∫_0 ^(π/2)    (dθ/(2+e^(iθ) )) = (1/2) ∫_0 ^(π/2)    (dθ/(1+(1/2)e^(iθ) )) =(1/2)f((1/2))  ⇒2I =(π/2) −(1/(2(1+(1/4)))) +i{  (1/(4(1+(1/4)))) −(1/(2(1+(1/2))))}  =(π/2) (2/5) +i{(1/5) −(1/3)} = (π/5) −(2/(15)) i ⇒ I =(π/(10)) −(i/(15))

4)letI=0π2dθ2+eiθ=120π2dθ1+12eiθ=12f(12) 2I=π212(1+14)+i{14(1+14)12(1+12)} =π225+i{1513}=π5215iI=π10i15

Terms of Service

Privacy Policy

Contact: info@tinkutara.com