Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 38721 by maxmathsup by imad last updated on 28/Jun/18

let  f(x)=(√(1+2x^2 ))  −x(√2)  +3  1) calculate lim_(x→+∞)  f(x) and lim_(x→−∞) f(x)  2)calculate lim_(x→+∞)   ((f(x))/x) and lim_(x→−∞)   ((f(x))/x)  3)give the assymtote to graph C_f   4) give the assymtote to C_f   at point A(0,f(0))  5) find f^(−1) (x) and calculate (f^(−1) )^′ (x)  6) calculate  ∫_0 ^1 f(x)dx.

letf(x)=1+2x2x2+31)calculatelimx+f(x)andlimxf(x)2)calculatelimx+f(x)xandlimxf(x)x3)givetheassymtotetographCf4)givetheassymtotetoCfatpointA(0,f(0))5)findf1(x)andcalculate(f1)(x)6)calculate01f(x)dx.

Commented by prof Abdo imad last updated on 02/Jul/18

1) we have (√(1+2x^2  )) =x(√2)(√( 1+(1/(2x^2 ))))  ∼  x(√2){ 1+ (1/(4x^2 ))}  (x→+∞) ⇒f(x)∼ ((√2)/(4x)) +3 ⇒  lim_(x→+∞)  f(x)= 3 also we can use this method  lim_(x→+∞) f(x)=lim((((√(1+2x^2 ))−(x(√2)−3))((√(1+2x^2 )) +x(√2)−3))/((√(1+2x^2 )) +x(√2) −3))  =lim_(x→+∞) ((1+2x^2  −(2x^2  −6x(√2) +9))/((√(1+2x^2 )) +x(√2) −3))  =lim_(x→+∞) ((6x(√2) −8)/((√(1+2x^2 )) +x(√2)−3))  =lim_(x→+∞)   ((6x(√2)−8)/(x(√2){(√(1+(1/(2x^2 )))) +1−(3/(x(√2)))})) =3  lim_(x→−∞) f(x)=lim_(x→−∞) (√(1+2x^2 )) −x(√2) +3 =+∞  2)we have lim_(x→+∗)  f(x)=3 ⇒lim_(x→+∞) ((f(x))/x) =0  (√(1+2x^2 ))=−x(√2)(√(1+(1/(2x^2 ))))  for x<0  ∼−x(√2)( 1+(1/(4x^2 )))(x→−∞) ⇒  f(x) ∼ −2(√2)x  −((√2)/(4x)) +3 ⇒ ((f(x))/x) ∼−2(√2) −((√2)/(4x^2 )) +(3/x)  ⇒lim_(x→+∞)   ((f(x))/x) ^ =−2(√2)

1)wehave1+2x2=x21+12x2x2{1+14x2}(x+)f(x)24x+3limx+f(x)=3alsowecanusethismethodlimx+f(x)=lim(1+2x2(x23))(1+2x2+x23)1+2x2+x23=limx+1+2x2(2x26x2+9)1+2x2+x23=limx+6x281+2x2+x23=limx+6x28x2{1+12x2+13x2}=3limxf(x)=limx1+2x2x2+3=+2)wehavelimx+f(x)=3limx+f(x)x=01+2x2=x21+12x2forx<0x2(1+14x2)(x)f(x)22x24x+3f(x)x2224x2+3xlimx+f(x)x=22

Commented by prof Abdo imad last updated on 02/Jul/18

lim_(x→−∞) ((f(x))/x) =−2(√2)  but we have  f(x) ∼ −2(√2)x +3 −((√2)/(4x)) (x→−∞) ⇒  lim_(x→−∞) f(x)−(−2(√2)x+3)=0 so   y=−2(√2)+3 is equation of asshmptote to C_f   at −∞

limxf(x)x=22butwehavef(x)22x+324x(x)limxf(x)(22x+3)=0soy=22+3isequationofasshmptotetoCfat

Commented by prof Abdo imad last updated on 02/Jul/18

4) first change assymptote by equation of   tangent  we have f^′ (x)= ((4x)/(2(√(1+2x^2 )))) −(√2)= ((2x)/(√(1+2x^2 ))) −(√2)  ⇒f^′ (0) =−(√2)  f(0) =4  ⇒ the equation of assymptote is  y =f^′ (0)x +f(0) =−(√2)x +4

4)firstchangeassymptotebyequationoftangentwehavef(x)=4x21+2x22=2x1+2x22f(0)=2f(0)=4theequationofassymptoteisy=f(0)x+f(0)=2x+4

Commented by prof Abdo imad last updated on 02/Jul/18

5) f(x)=y ⇔ x =f^(−1) (y) ⇒(√(1+2x^2 ))−x(√2)+3=y  ⇒(√(1+2x^2 ))=(x(√2)+y−3)⇒  1+2x^2  =(x(√2)+y−3)^2  ⇒  1+2x^2  =2x^2  +2x(√2)(y−3) +y^2  −6y +9 ⇒  2(√2)(y−3)x +y^(2 ) −6y +8=0 ⇒  2(√2)(y−3)x = −y^2  +6y −8 ⇒  x=((−y^2  +6y −8)/(2(√2)(y−3))) =f^(−1) (y)  ⇒  f^(−1) (x) = ((x^(2 )  −6x +8)/(2(√2)(3−x))) .  (f^(−1) (x))^′  =(1/(2(√2))){ (((2x−6)(3−x) +(x^2  −6x +8))/((3−x)^2 ))}  =(1/(2(√2))){ ((6x −2x^2  −18 +6x +x^(2 ) −6x +8)/((3−x)^2 ))}  =(1/(2(√2))){ ((−x^2   +6x  −10)/((3−x)^2 ))}

5)f(x)=yx=f1(y)1+2x2x2+3=y1+2x2=(x2+y3)1+2x2=(x2+y3)21+2x2=2x2+2x2(y3)+y26y+922(y3)x+y26y+8=022(y3)x=y2+6y8x=y2+6y822(y3)=f1(y)f1(x)=x26x+822(3x).(f1(x))=122{(2x6)(3x)+(x26x+8)(3x)2}=122{6x2x218+6x+x26x+8(3x)2}=122{x2+6x10(3x)2}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com