Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 38723 by maxmathsup by imad last updated on 28/Jun/18

find the value of  ∫_0 ^∞    ((xsin(3x))/((1+x^2 )^2 ))dx

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{xsin}\left(\mathrm{3}{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$

Commented by math khazana by abdo last updated on 30/Jun/18

let I = ∫_0 ^∞    ((x sin(3x))/((1+x^2 )^2 ))dx  2I = ∫_(−∞) ^(+∞)   ((x sin(3x))/((1+x^2 )^2 ))dx =Im( ∫_(−∞) ^(+∞)  ((x e^(3ix) )/((x^2  +1)^2 ))dx)  let ϕ(z)= ((z e^(3iz) )/((z^2 +1)^2 ))  ϕ(z)= ((z e^(3iz) )/((z−i)^2 (z+i)^2 )) the polrs of ϕ are i and −i  (doubles)  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i) but  Res(ϕ,i)=lim_(z→i) (1/((2−1)!)) {(z−i)^2 ϕ(z)}^((1))   =lim_(z→i) { ((z e^(3iz) )/((z+i)^2 ))}^((1))   =lim_(z→i)   (((e^(3iz)   +3iz e^(3iz) )(z+i)^2  −2(z+i)z e^(3iz) )/((z+i)^4 ))  =lim_(z→i)   (((1+3iz)e^(3iz) (z+i) −2z e^(3iz) )/((z+i)^3 ))  =(((1−3)e^(−3) (2i) −2ie^(−3) )/((2i)^3 )) =(((−4i−2i)e^(−3) )/(−8i))  = ((6 e^(−3) )/8) =(3/4)e^(−3)   2I =Im( ∫_(−∞) ^(+∞) ϕ(z)dz) ⇒ I = (3/8)e^(−3) .

$${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}\:{sin}\left(\mathrm{3}{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$$$\mathrm{2}{I}\:=\:\int_{−\infty} ^{+\infty} \:\:\frac{{x}\:{sin}\left(\mathrm{3}{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:={Im}\left(\:\int_{−\infty} ^{+\infty} \:\frac{{x}\:{e}^{\mathrm{3}{ix}} }{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dx}\right) \\ $$$${let}\:\varphi\left({z}\right)=\:\frac{{z}\:{e}^{\mathrm{3}{iz}} }{\left({z}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\varphi\left({z}\right)=\:\frac{{z}\:{e}^{\mathrm{3}{iz}} }{\left({z}−{i}\right)^{\mathrm{2}} \left({z}+{i}\right)^{\mathrm{2}} }\:{the}\:{polrs}\:{of}\:\varphi\:{are}\:{i}\:{and}\:−{i} \\ $$$$\left({doubles}\right) \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\right)\:{but} \\ $$$${Res}\left(\varphi,{i}\right)={lim}_{{z}\rightarrow{i}} \frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\:\left\{\left({z}−{i}\right)^{\mathrm{2}} \varphi\left({z}\right)\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \left\{\:\frac{{z}\:{e}^{\mathrm{3}{iz}} }{\left({z}+{i}\right)^{\mathrm{2}} }\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\frac{\left({e}^{\mathrm{3}{iz}} \:\:+\mathrm{3}{iz}\:{e}^{\mathrm{3}{iz}} \right)\left({z}+{i}\right)^{\mathrm{2}} \:−\mathrm{2}\left({z}+{i}\right){z}\:{e}^{\mathrm{3}{iz}} }{\left({z}+{i}\right)^{\mathrm{4}} } \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\frac{\left(\mathrm{1}+\mathrm{3}{iz}\right){e}^{\mathrm{3}{iz}} \left({z}+{i}\right)\:−\mathrm{2}{z}\:{e}^{\mathrm{3}{iz}} }{\left({z}+{i}\right)^{\mathrm{3}} } \\ $$$$=\frac{\left(\mathrm{1}−\mathrm{3}\right){e}^{−\mathrm{3}} \left(\mathrm{2}{i}\right)\:−\mathrm{2}{ie}^{−\mathrm{3}} }{\left(\mathrm{2}{i}\right)^{\mathrm{3}} }\:=\frac{\left(−\mathrm{4}{i}−\mathrm{2}{i}\right){e}^{−\mathrm{3}} }{−\mathrm{8}{i}} \\ $$$$=\:\frac{\mathrm{6}\:{e}^{−\mathrm{3}} }{\mathrm{8}}\:=\frac{\mathrm{3}}{\mathrm{4}}{e}^{−\mathrm{3}} \\ $$$$\mathrm{2}{I}\:={Im}\left(\:\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}\right)\:\Rightarrow\:{I}\:=\:\frac{\mathrm{3}}{\mathrm{8}}{e}^{−\mathrm{3}} . \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com