All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 38724 by maxmathsup by imad last updated on 28/Jun/18
calculate∫0∞x2cos(πx)(x2+4)2dx
Commented by maxmathsup by imad last updated on 30/Jun/18
letI=∫0∞x2cos(πx)(x2+4)2dx2I=∫−∞+∞x2cos(πx)(x2+4)2dx=Re(∫−∞+∞x2eiπx(x2+4)2)letφ(z)=z2eiπz(z2+4)2wehaveφ(z)=z2eiπz(z−2i)2(z+2i)2sothepolesofφare2iand−2i∫−∞+∞φ(z)dz=2iπRes(φ,2i)butRes(φ,2i)=limz→2i1(2−1)!{(z−2i)2φ(z)}(1)=limz→2i{z2eiπz(z+2i)2}(1)=limz→2i{(2zeiπz+iπz2eiπz)(z+2i)2−2(z+2i)z2eiπz(z+2i)4}limz→2i(2z+iπz2)eiπz(z+2i)−2z2eiπz(z+2i)3=(4i−4iπ)e−2π(4i)+8e−2π(4i)3=(−16+16π+8)e−2π−64i=(8−16π)e−2π64i∫−∞+∞φ(z)dz=2iπ(8−16π)e−2π64i=π(8−16π)e−2π32=π328(1−2π)e−2π=π4(1−2π)e−2π⇒
2I=π4(1−2π)e−2π⇒I=π8(1−2π)e−2π.π
Terms of Service
Privacy Policy
Contact: info@tinkutara.com