Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38724 by maxmathsup by imad last updated on 28/Jun/18

calculate  ∫_0 ^∞    ((x^2 cos(πx))/((x^2  +4)^2 ))dx

calculate0x2cos(πx)(x2+4)2dx

Commented by maxmathsup by imad last updated on 30/Jun/18

let I =∫_0 ^∞  ((x^2 cos(πx))/((x^2  +4)^2 ))dx  2I = ∫_(−∞) ^(+∞)   ((x^2 cos(πx))/((x^2  +4)^2 ))dx  =Re( ∫_(−∞) ^(+∞)  ((x^2  e^(iπx) )/((x^2  +4)^2 ))) let  ϕ(z)=((z^2  e^(iπz) )/((z^2 +4)^2 ))  we have ϕ(z) =((z^2  e^(iπz) )/((z−2i)^2 (z+2i)^2 )) so the poles of ϕ are 2i and −2i  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,2i) but  Res(ϕ,2i) =lim_(z→2i)    (1/((2−1)!)) { (z−2i)^2 ϕ(z)}^((1))   =lim_(z→2i)   { ((z^2 e^(iπz) )/((z+2i)^2 ))}^((1)) =lim_(z→2i)  { (((2z e^(iπz)  +iπz^2  e^(iπz) )(z+2i)^2  −2(z+2i)z^2 e^(iπz) )/((z+2i)^4 ))}  lim_(z→2i)   (((2z+iπz^2 )e^(iπz) (z+2i)−2z^2  e^(iπz) )/((z+2i)^3 ))  = (((4i −4iπ)e^(−2π) (4i) +8 e^(−2π) )/((4i)^3 )) =(((−16 +16 π +8)e^(−2π) )/(−64i)) =(((8−16π)e^(−2π) )/(64i))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ (((8−16π)e^(−2π) )/(64i)) =π (((8−16π)e^(−2π) )/(32))  =(π/(32)) 8(1−2π)e^(−2π)  =(π/4)(1−2π)e^(−2π)   ⇒

letI=0x2cos(πx)(x2+4)2dx2I=+x2cos(πx)(x2+4)2dx=Re(+x2eiπx(x2+4)2)letφ(z)=z2eiπz(z2+4)2wehaveφ(z)=z2eiπz(z2i)2(z+2i)2sothepolesofφare2iand2i+φ(z)dz=2iπRes(φ,2i)butRes(φ,2i)=limz2i1(21)!{(z2i)2φ(z)}(1)=limz2i{z2eiπz(z+2i)2}(1)=limz2i{(2zeiπz+iπz2eiπz)(z+2i)22(z+2i)z2eiπz(z+2i)4}limz2i(2z+iπz2)eiπz(z+2i)2z2eiπz(z+2i)3=(4i4iπ)e2π(4i)+8e2π(4i)3=(16+16π+8)e2π64i=(816π)e2π64i+φ(z)dz=2iπ(816π)e2π64i=π(816π)e2π32=π328(12π)e2π=π4(12π)e2π

Commented by maxmathsup by imad last updated on 30/Jun/18

2I = (π/4)(1−2π)e^(−2π)  ⇒ I =(π/8)(1−2π)e^(−2π) .  π

2I=π4(12π)e2πI=π8(12π)e2π.π

Terms of Service

Privacy Policy

Contact: info@tinkutara.com