Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 38725 by maxmathsup by imad last updated on 28/Jun/18

let f(x)=ln(1+ e^(−x) )  developp f at integr serie .

$${let}\:{f}\left({x}\right)={ln}\left(\mathrm{1}+\:{e}^{−{x}} \right)\:\:{developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$

Commented by abdo.msup.com last updated on 29/Jun/18

we have ln(1+u) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) x^n ⇒  ln(1+e^(−x) ) =Σ_(n=1) ^∞   (((−1)^n )/n) e^(−nx)   =Σ_(n=1) ^∞  (((−1)^n )/(n!)) Σ_(p=0) ^∞  (((−nx)^p )/(p!))  =Σ_(n=1) ^∞    (((−1)^n )/(n!)){Σ_(p=0) ^∞ (((−n)^p )/(p!))x^p }.

$${we}\:{have}\:{ln}\left(\mathrm{1}+{u}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:{x}^{{n}} \Rightarrow \\ $$$${ln}\left(\mathrm{1}+{e}^{−{x}} \right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\:{e}^{−{nx}} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{\left(−{nx}\right)^{{p}} }{{p}!} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\left\{\sum_{{p}=\mathrm{0}} ^{\infty} \frac{\left(−{n}\right)^{{p}} }{{p}!}{x}^{{p}} \right\}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com