Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38727 by maxmathsup by imad last updated on 28/Jun/18

let n from N  and  A_n = ∫_(−∞) ^(+∞)     ((cos(ax))/((x^2  +x+1)^n ))dx  and  B_n = ∫_(−∞) ^(+∞)    ((sin(ax))/((x^2  +x+1)^n ))dx  find the value of A_(n )   and B_n   .

letnfromNandAn=+cos(ax)(x2+x+1)ndxandBn=+sin(ax)(x2+x+1)ndxfindthevalueofAnandBn.

Commented by math khazana by abdo last updated on 01/Jul/18

we have A_n  +iB_n = ∫_(−∞) ^(+∞)   (e^(iax) /((x^2  +x+1)^n ))dx =W_n   W_n = ∫_(−∞) ^(+∞)     (e^(iax) /(((x+(1/2))^2 +(3/4))^n ))dx changement  x+(1/2)=((√3)/2) t  give   W_n = ((4/3))^n   ∫_(−∞) ^(+∞)   (e^(ia(((√3)/2)t−(1/2))) /((t^2  +1)^n )) ((√3)/2)dt  =((√3)/2)((4/3))^n  e^(−((ia)/2))   ∫_(−∞) ^(+∞)      (e^(i((√3)/2)at) /((t^2 +1)^n ))dt let λ =((√3)/2)a   and find ∫_(−∞) ^(+∞)    (e^(iλt) /((t^2  +1)^n )) =I_λ   let ϕ(z)= (e^(iλz) /((z^2  +1)^n ))  ϕ(z) = (e^(iλz) /((z−i)^n (z+i)^n ))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i) =lim_(z→i)   (1/((n−1)!)) { (z−i)^n ϕ(z)}^((n−1))   lim_(z→i)   (1/((n−1)!))  { e^(iλz)  (z+i)^(−n) }^((n−1))     but  {e^(iλz)  (z+i)^((−n)) }^((p))  =Σ_(k=0) ^p  C_p ^k  {(z+i)^((−n)) }^((k))  (e^(iλz) )^((p−k))   ...be continued...

wehaveAn+iBn=+eiax(x2+x+1)ndx=WnWn=+eiax((x+12)2+34)ndxchangementx+12=32tgiveWn=(43)n+eia(32t12)(t2+1)n32dt=32(43)neia2+ei32at(t2+1)ndtletλ=32aandfind+eiλt(t2+1)n=Iλletφ(z)=eiλz(z2+1)nφ(z)=eiλz(zi)n(z+i)n+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(n1)!{(zi)nφ(z)}(n1)limzi1(n1)!{eiλz(z+i)n}(n1)but{eiλz(z+i)(n)}(p)=k=0pCpk{(z+i)(n)}(k)(eiλz)(pk)...becontinued...

Commented by math khazana by abdo last updated on 02/Jul/18

let find ((z +i)^(−n) )^((k))   (z+i)^(−n) }^((1)) =−n(z+i)^(−n−1)   {(z+i)^(−n) }^((2)) =(−1)^2 n(n+1) (z+i)^(−n−2)  ⇒  {(z+i)^(−n) }^((k)) =(−1)^k n(n+1)...(n+k−1)(z+i)^(−n−k)   also we have (e^(iλz) )^((1)) =iλ e^(iλz)   (e^(iλz) )^((2)) =(iλ)^2  e^(iλz)  ⇒(e^(iλz) )^((p−k)) =(iλ)^(p−k)  e^(iλz)  ⇒  {e^(iλz) (z+i)^(−n) }^((p)) =Σ_(k=0) ^p  C_p ^k  (−1)^k n(n+1)...(n+k−1)(z+i)^(−n−k) (iλ)^(p−k)  e^(iλz)   p=n−1 ⇒  {e^(iλz) (z+i)^(−n) }^((n−1)) =Σ_(k=0) ^(n−1)  C_(n−1) ^k (−1)^k  n(n+1)...(2n−1)(z+i)^(−2n+1) (iλ)^(n−1−k)  e^(iλz)   Res(ϕ,i) = (1/((n−1)!)) Σ_(k=0) ^(n−1)  C_(n−1) ^k (−1)^k n(n+1)...(2n−1)(2i)^(−2n+1) (iλ)^(n−1−k)  e^(−λ)

letfind((z+i)n)(k)(z+i)n}(1)=n(z+i)n1{(z+i)n}(2)=(1)2n(n+1)(z+i)n2{(z+i)n}(k)=(1)kn(n+1)...(n+k1)(z+i)nkalsowehave(eiλz)(1)=iλeiλz(eiλz)(2)=(iλ)2eiλz(eiλz)(pk)=(iλ)pkeiλz{eiλz(z+i)n}(p)=k=0pCpk(1)kn(n+1)...(n+k1)(z+i)nk(iλ)pkeiλzp=n1{eiλz(z+i)n}(n1)=k=0n1Cn1k(1)kn(n+1)...(2n1)(z+i)2n+1(iλ)n1keiλzRes(φ,i)=1(n1)!k=0n1Cn1k(1)kn(n+1)...(2n1)(2i)2n+1(iλ)n1keλ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com