All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 38727 by maxmathsup by imad last updated on 28/Jun/18
letnfromNandAn=∫−∞+∞cos(ax)(x2+x+1)ndxandBn=∫−∞+∞sin(ax)(x2+x+1)ndxfindthevalueofAnandBn.
Commented by math khazana by abdo last updated on 01/Jul/18
wehaveAn+iBn=∫−∞+∞eiax(x2+x+1)ndx=WnWn=∫−∞+∞eiax((x+12)2+34)ndxchangementx+12=32tgiveWn=(43)n∫−∞+∞eia(32t−12)(t2+1)n32dt=32(43)ne−ia2∫−∞+∞ei32at(t2+1)ndtletλ=32aandfind∫−∞+∞eiλt(t2+1)n=Iλletφ(z)=eiλz(z2+1)nφ(z)=eiλz(z−i)n(z+i)n∫−∞+∞φ(z)dz=2iπRes(φ,i)Res(φ,i)=limz→i1(n−1)!{(z−i)nφ(z)}(n−1)limz→i1(n−1)!{eiλz(z+i)−n}(n−1)but{eiλz(z+i)(−n)}(p)=∑k=0pCpk{(z+i)(−n)}(k)(eiλz)(p−k)...becontinued...
Commented by math khazana by abdo last updated on 02/Jul/18
letfind((z+i)−n)(k)(z+i)−n}(1)=−n(z+i)−n−1{(z+i)−n}(2)=(−1)2n(n+1)(z+i)−n−2⇒{(z+i)−n}(k)=(−1)kn(n+1)...(n+k−1)(z+i)−n−kalsowehave(eiλz)(1)=iλeiλz(eiλz)(2)=(iλ)2eiλz⇒(eiλz)(p−k)=(iλ)p−keiλz⇒{eiλz(z+i)−n}(p)=∑k=0pCpk(−1)kn(n+1)...(n+k−1)(z+i)−n−k(iλ)p−keiλzp=n−1⇒{eiλz(z+i)−n}(n−1)=∑k=0n−1Cn−1k(−1)kn(n+1)...(2n−1)(z+i)−2n+1(iλ)n−1−keiλzRes(φ,i)=1(n−1)!∑k=0n−1Cn−1k(−1)kn(n+1)...(2n−1)(2i)−2n+1(iλ)n−1−ke−λ
Terms of Service
Privacy Policy
Contact: info@tinkutara.com