Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38746 by MJS last updated on 29/Jun/18

this is still waiting to be solved...  ∫((√((t−1)t(t+1)))/(3t^2 −4))dt=?

$$\mathrm{this}\:\mathrm{is}\:\mathrm{still}\:\mathrm{waiting}\:\mathrm{to}\:\mathrm{be}\:\mathrm{solved}... \\ $$$$\int\frac{\sqrt{\left({t}−\mathrm{1}\right){t}\left({t}+\mathrm{1}\right)}}{\mathrm{3}{t}^{\mathrm{2}} −\mathrm{4}}{dt}=? \\ $$

Commented by behi83417@gmail.com last updated on 29/Jun/18

this can not be difined  in terms of  primary functions.dont spend time on  it.

$${this}\:{can}\:{not}\:{be}\:{difined}\:\:{in}\:{terms}\:{of} \\ $$$${primary}\:{functions}.{dont}\:{spend}\:{time}\:{on} \\ $$$${it}. \\ $$

Commented by prof Abdo imad last updated on 29/Jun/18

I = ∫   ((√(t(t^2 −1)))/(3t^2 −4))dt  changement t=ch(x)give  I  = ∫  (((√(ch(x))) sh(x))/(3ch^2 x −4)) sh(x)dx  = ∫  ((sh^2 (x)(√(ch(x))))/(3ch^2 x −4))dx  (√(chx))=u ⇒chx=u^2 ⇒x=argch(u^2 )  I = ∫  (((u^4 −1)u)/(3u^4 −4))  ((2udu)/(√(u^4 −1)))  = ∫   ((2u^2 (√(u^4 −1)))/(3u^4 −4))du= ∫  ((2u^2 (√(u^4 −1)))/(4u^4 −4 −u^4 ))du  =∫    ((2u^2 (√(u^4 −1)))/(4((√(u^4 −1)))^2  −u^4 ))du  chang.(√(u^4 −1))=x⇒u^4 −1=x^2 ⇒u=(1+x^2 )^(1/4)   I = ∫   ((x(√(x^2 +1)))/(4x^2  −1−x^2 )) (x/2)(1+x^2 )^(−(3/4))  dx  = ∫   ((x^2 (x^2 +1)^(−(1/4)) )/(3x^2 −1))dx chang .x=tanθ give  I = ∫   ((tan^2 θ (cos^(−2) θ)^(−(1/4)) )/(3tan^2 θ −1)) (1+tan^2 θ)dθ  ....be continued...

$${I}\:=\:\int\:\:\:\frac{\sqrt{{t}\left({t}^{\mathrm{2}} −\mathrm{1}\right)}}{\mathrm{3}{t}^{\mathrm{2}} −\mathrm{4}}{dt}\:\:{changement}\:{t}={ch}\left({x}\right){give} \\ $$$${I}\:\:=\:\int\:\:\frac{\sqrt{{ch}\left({x}\right)}\:{sh}\left({x}\right)}{\mathrm{3}{ch}^{\mathrm{2}} {x}\:−\mathrm{4}}\:{sh}\left({x}\right){dx} \\ $$$$=\:\int\:\:\frac{{sh}^{\mathrm{2}} \left({x}\right)\sqrt{{ch}\left({x}\right)}}{\mathrm{3}{ch}^{\mathrm{2}} {x}\:−\mathrm{4}}{dx}\:\:\sqrt{{chx}}={u}\:\Rightarrow{chx}={u}^{\mathrm{2}} \Rightarrow{x}={argch}\left({u}^{\mathrm{2}} \right) \\ $$$${I}\:=\:\int\:\:\frac{\left({u}^{\mathrm{4}} −\mathrm{1}\right){u}}{\mathrm{3}{u}^{\mathrm{4}} −\mathrm{4}}\:\:\frac{\mathrm{2}{udu}}{\sqrt{{u}^{\mathrm{4}} −\mathrm{1}}} \\ $$$$=\:\int\:\:\:\frac{\mathrm{2}{u}^{\mathrm{2}} \sqrt{{u}^{\mathrm{4}} −\mathrm{1}}}{\mathrm{3}{u}^{\mathrm{4}} −\mathrm{4}}{du}=\:\int\:\:\frac{\mathrm{2}{u}^{\mathrm{2}} \sqrt{{u}^{\mathrm{4}} −\mathrm{1}}}{\mathrm{4}{u}^{\mathrm{4}} −\mathrm{4}\:−{u}^{\mathrm{4}} }{du} \\ $$$$=\int\:\:\:\:\frac{\mathrm{2}{u}^{\mathrm{2}} \sqrt{{u}^{\mathrm{4}} −\mathrm{1}}}{\mathrm{4}\left(\sqrt{{u}^{\mathrm{4}} −\mathrm{1}}\right)^{\mathrm{2}} \:−{u}^{\mathrm{4}} }{du}\:\:{chang}.\sqrt{{u}^{\mathrm{4}} −\mathrm{1}}={x}\Rightarrow{u}^{\mathrm{4}} −\mathrm{1}={x}^{\mathrm{2}} \Rightarrow{u}=\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$${I}\:=\:\int\:\:\:\frac{{x}\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{\mathrm{4}{x}^{\mathrm{2}} \:−\mathrm{1}−{x}^{\mathrm{2}} }\:\frac{{x}}{\mathrm{2}}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{3}}{\mathrm{4}}} \:{dx} \\ $$$$=\:\int\:\:\:\frac{{x}^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)^{−\frac{\mathrm{1}}{\mathrm{4}}} }{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}}{dx}\:{chang}\:.{x}={tan}\theta\:{give} \\ $$$${I}\:=\:\int\:\:\:\frac{{tan}^{\mathrm{2}} \theta\:\left({cos}^{−\mathrm{2}} \theta\right)^{−\frac{\mathrm{1}}{\mathrm{4}}} }{\mathrm{3}{tan}^{\mathrm{2}} \theta\:−\mathrm{1}}\:\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right){d}\theta \\ $$$$....{be}\:{continued}... \\ $$

Commented by MJS last updated on 29/Jun/18

Sir Behi, I think the same. but can we be sure?

$$\mathrm{Sir}\:\mathrm{Behi},\:\mathrm{I}\:\mathrm{think}\:\mathrm{the}\:\mathrm{same}.\:\mathrm{but}\:\mathrm{can}\:\mathrm{we}\:\mathrm{be}\:\mathrm{sure}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com