Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 38762 by Raj Singh last updated on 29/Jun/18

Commented by tanmay.chaudhury50@gmail.com last updated on 29/Jun/18

Commented by abdo.msup.com last updated on 29/Jun/18

we have f(x)=arctan(cosx +sinx)  =arctan((√2)cos(x−(π/4)))⇒  f^′ (x)= ((−(√2)sin(x−(π/4)))/(1+2 cos^2 (x−(π/4)))) =(√2)sin((π/4)−x)  we have 0≤x≤(π/4) ⇒−(π/4)≤−x≤0 ⇒  0≤(π/4) −x≤(π/4) ⇒(√2)sin((π/4)−x)≥0 ⇒  f^′ (x)≥0 ⇒ f is increasing on[0,(π/4)].

$${we}\:{have}\:{f}\left({x}\right)={arctan}\left({cosx}\:+{sinx}\right) \\ $$$$={arctan}\left(\sqrt{\mathrm{2}}{cos}\left({x}−\frac{\pi}{\mathrm{4}}\right)\right)\Rightarrow \\ $$$${f}^{'} \left({x}\right)=\:\frac{−\sqrt{\mathrm{2}}{sin}\left({x}−\frac{\pi}{\mathrm{4}}\right)}{\mathrm{1}+\mathrm{2}\:{cos}^{\mathrm{2}} \left({x}−\frac{\pi}{\mathrm{4}}\right)}\:=\sqrt{\mathrm{2}}{sin}\left(\frac{\pi}{\mathrm{4}}−{x}\right) \\ $$$${we}\:{have}\:\mathrm{0}\leqslant{x}\leqslant\frac{\pi}{\mathrm{4}}\:\Rightarrow−\frac{\pi}{\mathrm{4}}\leqslant−{x}\leqslant\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{0}\leqslant\frac{\pi}{\mathrm{4}}\:−{x}\leqslant\frac{\pi}{\mathrm{4}}\:\Rightarrow\sqrt{\mathrm{2}}{sin}\left(\frac{\pi}{\mathrm{4}}−{x}\right)\geqslant\mathrm{0}\:\Rightarrow \\ $$$${f}^{'} \left({x}\right)\geqslant\mathrm{0}\:\Rightarrow\:{f}\:{is}\:{increasing}\:{on}\left[\mathrm{0},\frac{\pi}{\mathrm{4}}\right]. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 29/Jun/18

y=tan^(−1) (sinx+cosx)  (dy/dx)=((cosx−sinx)/(1+(sinx+cosx)^2 ))  when (Π/4)>x>0   value of cosx>sinx  so (dy/dx)>0  hence y=f(x) increasing function  in the interval (0,(Π/4))  i am attaching graph for better understanding  fo

$${y}={tan}^{−\mathrm{1}} \left({sinx}+{cosx}\right) \\ $$$$\frac{{dy}}{{dx}}=\frac{{cosx}−{sinx}}{\mathrm{1}+\left({sinx}+{cosx}\right)^{\mathrm{2}} } \\ $$$${when}\:\frac{\Pi}{\mathrm{4}}>{x}>\mathrm{0}\:\:\:{value}\:{of}\:{cosx}>{sinx} \\ $$$${so}\:\frac{{dy}}{{dx}}>\mathrm{0}\:\:{hence}\:{y}={f}\left({x}\right)\:{increasing}\:{function} \\ $$$${in}\:{the}\:{interval}\:\left(\mathrm{0},\frac{\Pi}{\mathrm{4}}\right) \\ $$$${i}\:{am}\:{attaching}\:{graph}\:{for}\:{better}\:{understanding} \\ $$$${fo} \\ $$$$ \\ $$

Answered by MJS last updated on 29/Jun/18

sin x +cos x =(√2)sin(x+(π/4))  f(x)=arctan((√2)sin(x+(π/4)))  (d/dx)[arctan f(x)]=((f′(x))/(f(x)^2 +1))=  =(((√2)cos(x+(π/4)))/(2sin^2 (x+(π/4))+1))    (2sin^2 (x+(π/4))+1)>0 ∀x∈R  (√2)cos(x+(π/4))=0 ⇒ x=zπ−(3/4)π; z∈Z ⇒  ⇒ (√2)cos(x+(π/4))>0 ∀x∈]−(3/4)π; (π/4)[ ⇒  ⇒ f(x) is increasing for x∈]−(3/4)π; (π/4)[ ⇒  ⇒ f(x) is increasing for x∈]0; (π/4)[

$$\mathrm{sin}\:{x}\:+\mathrm{cos}\:{x}\:=\sqrt{\mathrm{2}}\mathrm{sin}\left({x}+\frac{\pi}{\mathrm{4}}\right) \\ $$$${f}\left({x}\right)={arctan}\left(\sqrt{\mathrm{2}}\mathrm{sin}\left({x}+\frac{\pi}{\mathrm{4}}\right)\right) \\ $$$$\frac{{d}}{{dx}}\left[\mathrm{arctan}\:{f}\left({x}\right)\right]=\frac{{f}'\left({x}\right)}{{f}\left({x}\right)^{\mathrm{2}} +\mathrm{1}}= \\ $$$$=\frac{\sqrt{\mathrm{2}}\mathrm{cos}\left({x}+\frac{\pi}{\mathrm{4}}\right)}{\mathrm{2sin}^{\mathrm{2}} \left({x}+\frac{\pi}{\mathrm{4}}\right)+\mathrm{1}} \\ $$$$ \\ $$$$\left(\mathrm{2sin}^{\mathrm{2}} \left({x}+\frac{\pi}{\mathrm{4}}\right)+\mathrm{1}\right)>\mathrm{0}\:\forall{x}\in\mathbb{R} \\ $$$$\sqrt{\mathrm{2}}\mathrm{cos}\left({x}+\frac{\pi}{\mathrm{4}}\right)=\mathrm{0}\:\Rightarrow\:{x}={z}\pi−\frac{\mathrm{3}}{\mathrm{4}}\pi;\:{z}\in\mathbb{Z}\:\Rightarrow \\ $$$$\left.\Rightarrow\:\sqrt{\mathrm{2}}\mathrm{cos}\left({x}+\frac{\pi}{\mathrm{4}}\right)>\mathrm{0}\:\forall{x}\in\right]−\frac{\mathrm{3}}{\mathrm{4}}\pi;\:\frac{\pi}{\mathrm{4}}\left[\:\Rightarrow\right. \\ $$$$\left.\Rightarrow\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{increasing}\:\mathrm{for}\:{x}\in\right]−\frac{\mathrm{3}}{\mathrm{4}}\pi;\:\frac{\pi}{\mathrm{4}}\left[\:\Rightarrow\right. \\ $$$$\left.\Rightarrow\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{increasing}\:\mathrm{for}\:{x}\in\right]\mathrm{0};\:\frac{\pi}{\mathrm{4}}\left[\right. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com