Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 3877 by Rasheed Soomro last updated on 23/Dec/15

What is the area of  overlapping  region of two circles having radii  r_1  and r_2  when the distance between  their centres is  c, given that r_1 +r_2 >c.

$$\mathcal{W}{hat}\:{is}\:{the}\:{area}\:{of}\:\:{overlapping} \\ $$ $${region}\:{of}\:{two}\:{circles}\:{having}\:{radii} \\ $$ $$\boldsymbol{\mathrm{r}}_{\mathrm{1}} \:{and}\:\boldsymbol{\mathrm{r}}_{\mathrm{2}} \:{when}\:{the}\:{distance}\:{between} \\ $$ $${their}\:{centres}\:{is}\:\:\boldsymbol{\mathrm{c}},\:{given}\:{that}\:\boldsymbol{\mathrm{r}}_{\mathrm{1}} +\boldsymbol{\mathrm{r}}_{\mathrm{2}} >\boldsymbol{\mathrm{c}}. \\ $$

Commented byprakash jain last updated on 24/Dec/15

I will make the correction.  The above procedure is for centers on different  side of common chord.

$$\mathrm{I}\:\mathrm{will}\:\mathrm{make}\:\mathrm{the}\:\mathrm{correction}. \\ $$ $$\mathrm{The}\:\mathrm{above}\:\mathrm{procedure}\:\mathrm{is}\:\mathrm{for}\:\mathrm{centers}\:\mathrm{on}\:\mathrm{different} \\ $$ $$\mathrm{side}\:\mathrm{of}\:\mathrm{common}\:\mathrm{chord}. \\ $$

Commented byprakash jain last updated on 24/Dec/15

Common chord AB  center O_1  and O_2   O_1 O_2  cuts AB at X  ∠AO_1 X=α  ∠AO_2 X=β  AB=2r_1 sin  α=2r_2 sin β  O_1 X=r_1 cos α,    XO_2 =r_2 cos β  r_1 cos α+r_2 cos β=c  area of △AO_1 B=(1/2)AB×O_1 X=r_1 ^2 cos αsin α  area of △AO_2 B=(1/2)AB×O_2 X=r_2 ^2 cos βsin β  area of overlapin portion=area of  circle segment − area of triangle  Area of overlapping portion on side of  circle with radius r_1 =αr_1 −area △AO_1 B       X=(1/2)αr_1 ^2 −(1/2)r_1 ^2 sin 2α     ...(1)  Area of overlapping portion on side of  circle with radius r_2 =βr_2 −area △AO_2 B       Y=(1/2)βr_2 ^2 −(1/2)r_2 ^2 sin 2β      ...(2)  Next step is to find α, β   r_1 cos α+r_2 cos β=c⇒r_1 ^2 cos^2 α=c^2 −2cr_2 cos β+r_2 ^2 cos^2 β  r_1 sin  α=r_2 sin β⇒r_1 ^2 cos^2 α=r_1 ^2 −r_2 ^2 +r_2 ^2 cos^2 β  c^2 −2cr_2 cos β+r_2 ^2 cos^2 β=r_1 ^2 −r_2 ^2 +r_2 ^2 cos^2 β  cos β=((c^2 −r_1 ^2 +r_2 ^2 )/(2cr_2 ))          ...(3)  cos α=((c^2 −r_2 ^2 +r_1 ^2 )/(2cr_2 ))         ...(4)    Total overlapping area is X+Y as given  in equation (1) and (2). value of α and β  given in (3) and (4).

$$\mathrm{Common}\:\mathrm{chord}\:\mathrm{AB} \\ $$ $$\mathrm{center}\:\mathrm{O}_{\mathrm{1}} \:\mathrm{and}\:\mathrm{O}_{\mathrm{2}} \\ $$ $$\mathrm{O}_{\mathrm{1}} \mathrm{O}_{\mathrm{2}} \:\mathrm{cuts}\:\mathrm{AB}\:\mathrm{at}\:\mathrm{X} \\ $$ $$\angle\mathrm{AO}_{\mathrm{1}} \mathrm{X}=\alpha \\ $$ $$\angle\mathrm{AO}_{\mathrm{2}} \mathrm{X}=\beta \\ $$ $$\mathrm{AB}=\mathrm{2}{r}_{\mathrm{1}} \mathrm{sin}\:\:\alpha=\mathrm{2}{r}_{\mathrm{2}} \mathrm{sin}\:\beta \\ $$ $$\mathrm{O}_{\mathrm{1}} \mathrm{X}={r}_{\mathrm{1}} \mathrm{cos}\:\alpha,\:\:\:\:\mathrm{XO}_{\mathrm{2}} ={r}_{\mathrm{2}} \mathrm{cos}\:\beta \\ $$ $${r}_{\mathrm{1}} \mathrm{cos}\:\alpha+{r}_{\mathrm{2}} \mathrm{cos}\:\beta={c} \\ $$ $$\mathrm{area}\:\mathrm{of}\:\bigtriangleup\mathrm{AO}_{\mathrm{1}} \mathrm{B}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{AB}×\mathrm{O}_{\mathrm{1}} \mathrm{X}={r}_{\mathrm{1}} ^{\mathrm{2}} \mathrm{cos}\:\alpha\mathrm{sin}\:\alpha \\ $$ $$\mathrm{area}\:\mathrm{of}\:\bigtriangleup\mathrm{AO}_{\mathrm{2}} \mathrm{B}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{AB}×\mathrm{O}_{\mathrm{2}} \mathrm{X}={r}_{\mathrm{2}} ^{\mathrm{2}} \mathrm{cos}\:\beta\mathrm{sin}\:\beta \\ $$ $$\mathrm{area}\:\mathrm{of}\:\mathrm{overlapin}\:\mathrm{portion}=\mathrm{area}\:\mathrm{of} \\ $$ $$\mathrm{circle}\:\mathrm{segment}\:−\:\mathrm{area}\:\mathrm{of}\:\mathrm{triangle} \\ $$ $$\mathrm{Area}\:\mathrm{of}\:\mathrm{overlapping}\:\mathrm{portion}\:\mathrm{on}\:\mathrm{side}\:\mathrm{of} \\ $$ $$\mathrm{circle}\:\mathrm{with}\:\mathrm{radius}\:{r}_{\mathrm{1}} =\alpha{r}_{\mathrm{1}} −{area}\:\bigtriangleup\mathrm{AO}_{\mathrm{1}} \mathrm{B} \\ $$ $$\:\:\:\:\:\mathrm{X}=\frac{\mathrm{1}}{\mathrm{2}}\alpha{r}_{\mathrm{1}} ^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}{r}_{\mathrm{1}} ^{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\alpha\:\:\:\:\:...\left(\mathrm{1}\right) \\ $$ $$\mathrm{Area}\:\mathrm{of}\:\mathrm{overlapping}\:\mathrm{portion}\:\mathrm{on}\:\mathrm{side}\:\mathrm{of} \\ $$ $$\mathrm{circle}\:\mathrm{with}\:\mathrm{radius}\:{r}_{\mathrm{2}} =\beta{r}_{\mathrm{2}} −{area}\:\bigtriangleup\mathrm{AO}_{\mathrm{2}} \mathrm{B} \\ $$ $$\:\:\:\:\:\mathrm{Y}=\frac{\mathrm{1}}{\mathrm{2}}\beta{r}_{\mathrm{2}} ^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}{r}_{\mathrm{2}} ^{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\beta\:\:\:\:\:\:...\left(\mathrm{2}\right) \\ $$ $$\mathrm{Next}\:\mathrm{step}\:\mathrm{is}\:\mathrm{to}\:\mathrm{find}\:\alpha,\:\beta\: \\ $$ $${r}_{\mathrm{1}} \mathrm{cos}\:\alpha+{r}_{\mathrm{2}} \mathrm{cos}\:\beta={c}\Rightarrow{r}_{\mathrm{1}} ^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \alpha={c}^{\mathrm{2}} −\mathrm{2}{cr}_{\mathrm{2}} \mathrm{cos}\:\beta+{r}_{\mathrm{2}} ^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \beta \\ $$ $${r}_{\mathrm{1}} \mathrm{sin}\:\:\alpha={r}_{\mathrm{2}} \mathrm{sin}\:\beta\Rightarrow{r}_{\mathrm{1}} ^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \alpha={r}_{\mathrm{1}} ^{\mathrm{2}} −{r}_{\mathrm{2}} ^{\mathrm{2}} +{r}_{\mathrm{2}} ^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \beta \\ $$ $${c}^{\mathrm{2}} −\mathrm{2}{cr}_{\mathrm{2}} \mathrm{cos}\:\beta+{r}_{\mathrm{2}} ^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \beta={r}_{\mathrm{1}} ^{\mathrm{2}} −{r}_{\mathrm{2}} ^{\mathrm{2}} +{r}_{\mathrm{2}} ^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \beta \\ $$ $$\mathrm{cos}\:\beta=\frac{{c}^{\mathrm{2}} −{r}_{\mathrm{1}} ^{\mathrm{2}} +{r}_{\mathrm{2}} ^{\mathrm{2}} }{\mathrm{2}{cr}_{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:...\left(\mathrm{3}\right) \\ $$ $$\mathrm{cos}\:\alpha=\frac{{c}^{\mathrm{2}} −{r}_{\mathrm{2}} ^{\mathrm{2}} +{r}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{2}{cr}_{\mathrm{2}} }\:\:\:\:\:\:\:\:\:...\left(\mathrm{4}\right) \\ $$ $$ \\ $$ $$\mathrm{Total}\:\mathrm{overlapping}\:\mathrm{area}\:\mathrm{is}\:\mathrm{X}+\mathrm{Y}\:\mathrm{as}\:\mathrm{given} \\ $$ $$\mathrm{in}\:\mathrm{equation}\:\left(\mathrm{1}\right)\:\mathrm{and}\:\left(\mathrm{2}\right).\:\mathrm{value}\:\mathrm{of}\:\alpha\:\mathrm{and}\:\beta \\ $$ $$\mathrm{given}\:\mathrm{in}\:\left(\mathrm{3}\right)\:\mathrm{and}\:\left(\mathrm{4}\right). \\ $$

Commented byYozzii last updated on 23/Dec/15

Isn′t the area of a sector of a circle of  radius r produced by angle α given by  (1/2)r^2 α?   rα gives arc length no?   Is the method different if both   centres are on the same side of the  commom chord?

$${Isn}'{t}\:{the}\:{area}\:{of}\:{a}\:{sector}\:{of}\:{a}\:{circle}\:{of} \\ $$ $${radius}\:{r}\:{produced}\:{by}\:{angle}\:\alpha\:{given}\:{by} \\ $$ $$\frac{\mathrm{1}}{\mathrm{2}}{r}^{\mathrm{2}} \alpha?\:\:\:{r}\alpha\:{gives}\:{arc}\:{length}\:{no}?\: \\ $$ $${Is}\:{the}\:{method}\:{different}\:{if}\:{both}\: \\ $$ $${centres}\:{are}\:{on}\:{the}\:{same}\:{side}\:{of}\:{the} \\ $$ $${commom}\:{chord}?\: \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com