Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 38775 by ajfour last updated on 29/Jun/18

Commented by ajfour last updated on 29/Jun/18

On a segment of length c , is kept  a unit square, overhanging a little;  such that (see diagram).  Find the length of segment c  under the bottom edge of square.

$${On}\:{a}\:{segment}\:{of}\:{length}\:\boldsymbol{{c}}\:,\:{is}\:{kept} \\ $$$${a}\:{unit}\:{square},\:{overhanging}\:{a}\:{little}; \\ $$$${such}\:{that}\:\left({see}\:{diagram}\right). \\ $$$${Find}\:{the}\:{length}\:{of}\:{segment}\:\boldsymbol{{c}} \\ $$$${under}\:{the}\:{bottom}\:{edge}\:{of}\:{square}. \\ $$

Commented by MrW3 last updated on 29/Jun/18

I think you have to give an additional  condition, e.g. the radius of the circle,  otherwise the segment c is not unique.

$${I}\:{think}\:{you}\:{have}\:{to}\:{give}\:{an}\:{additional} \\ $$$${condition},\:{e}.{g}.\:{the}\:{radius}\:{of}\:{the}\:{circle}, \\ $$$${otherwise}\:{the}\:{segment}\:{c}\:{is}\:{not}\:{unique}. \\ $$

Answered by MrW3 last updated on 30/Jun/18

let R=radius of the circle  let a=side of the square (a=1)  c=2R−a+x  (a/h)=(h/(2R−a))⇒h=(√(a(2R−a)))  (x/a)=(a/h)⇒x=(a^2 /h)=(a^2 /(√(a(2R−a))))  ⇒c=2R−a+(a^2 /(√(a(2R−a))))

$${let}\:{R}={radius}\:{of}\:{the}\:{circle} \\ $$$${let}\:{a}={side}\:{of}\:{the}\:{square}\:\left({a}=\mathrm{1}\right) \\ $$$${c}=\mathrm{2}{R}−{a}+{x} \\ $$$$\frac{{a}}{{h}}=\frac{{h}}{\mathrm{2}{R}−{a}}\Rightarrow{h}=\sqrt{{a}\left(\mathrm{2}{R}−{a}\right)} \\ $$$$\frac{{x}}{{a}}=\frac{{a}}{{h}}\Rightarrow{x}=\frac{{a}^{\mathrm{2}} }{{h}}=\frac{{a}^{\mathrm{2}} }{\sqrt{{a}\left(\mathrm{2}{R}−{a}\right)}} \\ $$$$\Rightarrow{c}=\mathrm{2}{R}−{a}+\frac{{a}^{\mathrm{2}} }{\sqrt{{a}\left(\mathrm{2}{R}−{a}\right)}} \\ $$

Commented by MrW3 last updated on 30/Jun/18

Commented by ajfour last updated on 30/Jun/18

let  tan θ = (x/a)      tan θ = (x/a) =(a/h) = (h/(c−x))  ⇒ (x^2 /a^2 ) = (a/(c−x))      and as a=1     x^3 −cx^2 +1=0   Let   y=(1/x)       ⇒    y^3 −cy+1=0  let   y=u+v  ⇒  u^3 +v^3 +3uv(u+v)−c(u+v)+1=0  or    u^3 +v^3 +(u+v)(3uv−c)+1=0  let   3uv = c    ⇒  u^3 v^3 = (c^3 /(27))  ⇒     u^3 +v^3  = −1  u^3 , v^3  are roots of          z^2 +z+(c^3 /(27)) =0       u^3 , v^3   = ((−1±(√(1−((4c^3 )/(27)))))/2)                    =((−1)/2)±(√((1/4)−(c^3 /(27))))     y= ((−(1/2)−(√((1/4)−(c^3 /(27))))))^(1/3)                     +((−(1/2)+(√((1/4)−(c^3 /(27)))) ))^(1/3)            x= (1/y) .

$${let}\:\:\mathrm{tan}\:\theta\:=\:\frac{{x}}{{a}} \\ $$$$\:\:\:\:\mathrm{tan}\:\theta\:=\:\frac{{x}}{{a}}\:=\frac{{a}}{{h}}\:=\:\frac{{h}}{{c}−{x}} \\ $$$$\Rightarrow\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\:=\:\frac{{a}}{{c}−{x}}\:\:\:\:\:\:{and}\:{as}\:{a}=\mathrm{1} \\ $$$$\:\:\:\boldsymbol{{x}}^{\mathrm{3}} −\boldsymbol{{cx}}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$$\:{Let}\:\:\:{y}=\frac{\mathrm{1}}{{x}}\:\:\:\:\: \\ $$$$\Rightarrow\:\:\:\:\boldsymbol{{y}}^{\mathrm{3}} −\boldsymbol{{cy}}+\mathrm{1}=\mathrm{0} \\ $$$${let}\:\:\:{y}={u}+{v} \\ $$$$\Rightarrow\:\:{u}^{\mathrm{3}} +{v}^{\mathrm{3}} +\mathrm{3}{uv}\left({u}+{v}\right)−{c}\left({u}+{v}\right)+\mathrm{1}=\mathrm{0} \\ $$$${or}\:\:\:\:{u}^{\mathrm{3}} +{v}^{\mathrm{3}} +\left({u}+{v}\right)\left(\mathrm{3}{uv}−{c}\right)+\mathrm{1}=\mathrm{0} \\ $$$${let}\:\:\:\mathrm{3}{uv}\:=\:{c}\:\:\:\:\Rightarrow\:\:{u}^{\mathrm{3}} {v}^{\mathrm{3}} =\:\frac{{c}^{\mathrm{3}} }{\mathrm{27}} \\ $$$$\Rightarrow\:\:\:\:\:{u}^{\mathrm{3}} +{v}^{\mathrm{3}} \:=\:−\mathrm{1} \\ $$$${u}^{\mathrm{3}} ,\:{v}^{\mathrm{3}} \:{are}\:{roots}\:{of} \\ $$$$\:\:\:\:\:\:\:\:{z}^{\mathrm{2}} +{z}+\frac{{c}^{\mathrm{3}} }{\mathrm{27}}\:=\mathrm{0} \\ $$$$\:\:\:\:\:{u}^{\mathrm{3}} ,\:{v}^{\mathrm{3}} \:\:=\:\frac{−\mathrm{1}\pm\sqrt{\mathrm{1}−\frac{\mathrm{4}{c}^{\mathrm{3}} }{\mathrm{27}}}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{−\mathrm{1}}{\mathrm{2}}\pm\sqrt{\frac{\mathrm{1}}{\mathrm{4}}−\frac{{c}^{\mathrm{3}} }{\mathrm{27}}} \\ $$$$\:\:\:{y}=\:\sqrt[{\mathrm{3}}]{−\frac{\mathrm{1}}{\mathrm{2}}−\sqrt{\frac{\mathrm{1}}{\mathrm{4}}−\frac{{c}^{\mathrm{3}} }{\mathrm{27}}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\sqrt[{\mathrm{3}}]{−\frac{\mathrm{1}}{\mathrm{2}}+\sqrt{\frac{\mathrm{1}}{\mathrm{4}}−\frac{{c}^{\mathrm{3}} }{\mathrm{27}}}\:} \\ $$$$\:\:\:\:\:\:\:\:\:{x}=\:\frac{\mathrm{1}}{{y}}\:. \\ $$$$ \\ $$

Commented by MJS last updated on 30/Jun/18

a=1 ⇒ c=((1+(√((2R−1)^3 )))/(√(2R−1))); R>(1/2)  (dc/dR)=2−(1/(√((2R−1)^3 )))  ⇒ c is minimal for R=(1/2)+((2)^(1/3) /4); c=((3(2)^(1/3) )/2)

$${a}=\mathrm{1}\:\Rightarrow\:{c}=\frac{\mathrm{1}+\sqrt{\left(\mathrm{2}{R}−\mathrm{1}\right)^{\mathrm{3}} }}{\sqrt{\mathrm{2}{R}−\mathrm{1}}};\:{R}>\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{{dc}}{{dR}}=\mathrm{2}−\frac{\mathrm{1}}{\sqrt{\left(\mathrm{2}{R}−\mathrm{1}\right)^{\mathrm{3}} }} \\ $$$$\Rightarrow\:{c}\:\mathrm{is}\:\mathrm{minimal}\:\mathrm{for}\:{R}=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt[{\mathrm{3}}]{\mathrm{2}}}{\mathrm{4}};\:{c}=\frac{\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{2}}}{\mathrm{2}} \\ $$

Commented by MJS last updated on 01/Jul/18

x^3 −cx^2 +1=0  x=z+(c/3)  (z+(c/3))^3 −c(z+(c/3))^2 +1=0  z^3 −(c^2 /3)z+((27−2c^3 )/(27))=0  u=(((1/(27))c^3 −(1/2)+((√3)/(18))(√(27−4c^3 ))))^(1/3) ; v=(((1/(27))c^3 −(1/2)−((√3)/(18))(√(27−4c^3 ))))^(1/3)   z_1 =u+v; x_1 =z_1 +(c/3)  z_2 =(−(1/2)−((√3)/2)i)u+(−(1/2)+((√3)/2)i)v; x_2 =z_2 +(c/3)  z_3 =(−(1/2)+((√3)/2)i)u+(−(1/2)−((√3)/2)i)v; x_3 =z_3 +(c/3)  I think this is easier than to find x=(1/y) with  y being a sum of two cubic roots. anyway  both methods lead to the same values, if you  use a calculator to get approximate values  the methods are equal...

$${x}^{\mathrm{3}} −{cx}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$${x}={z}+\frac{{c}}{\mathrm{3}} \\ $$$$\left({z}+\frac{{c}}{\mathrm{3}}\right)^{\mathrm{3}} −{c}\left({z}+\frac{{c}}{\mathrm{3}}\right)^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$${z}^{\mathrm{3}} −\frac{{c}^{\mathrm{2}} }{\mathrm{3}}{z}+\frac{\mathrm{27}−\mathrm{2}{c}^{\mathrm{3}} }{\mathrm{27}}=\mathrm{0} \\ $$$${u}=\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{\mathrm{27}}{c}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{18}}\sqrt{\mathrm{27}−\mathrm{4}{c}^{\mathrm{3}} }};\:{v}=\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{\mathrm{27}}{c}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{18}}\sqrt{\mathrm{27}−\mathrm{4}{c}^{\mathrm{3}} }} \\ $$$${z}_{\mathrm{1}} ={u}+{v};\:{x}_{\mathrm{1}} ={z}_{\mathrm{1}} +\frac{{c}}{\mathrm{3}} \\ $$$${z}_{\mathrm{2}} =\left(−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){u}+\left(−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){v};\:{x}_{\mathrm{2}} ={z}_{\mathrm{2}} +\frac{{c}}{\mathrm{3}} \\ $$$${z}_{\mathrm{3}} =\left(−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){u}+\left(−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){v};\:{x}_{\mathrm{3}} ={z}_{\mathrm{3}} +\frac{{c}}{\mathrm{3}} \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{this}\:\mathrm{is}\:\mathrm{easier}\:\mathrm{than}\:\mathrm{to}\:\mathrm{find}\:{x}=\frac{\mathrm{1}}{{y}}\:\mathrm{with} \\ $$$${y}\:\mathrm{being}\:\mathrm{a}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{two}\:\mathrm{cubic}\:\mathrm{roots}.\:\mathrm{anyway} \\ $$$$\mathrm{both}\:\mathrm{methods}\:\mathrm{lead}\:\mathrm{to}\:\mathrm{the}\:\mathrm{same}\:\mathrm{values},\:\mathrm{if}\:\mathrm{you} \\ $$$$\mathrm{use}\:\mathrm{a}\:\mathrm{calculator}\:\mathrm{to}\:\mathrm{get}\:\mathrm{approximate}\:\mathrm{values} \\ $$$$\mathrm{the}\:\mathrm{methods}\:\mathrm{are}\:\mathrm{equal}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com