Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 38881 by Rio Mike last updated on 30/Jun/18

solve for 0 ≤ θ ≤π, the equations  a)_  cos (2θ − (π/2))= (1/2)  b) cos θ − (√3) sin θ = 0

solvefor0θπ,theequationsa)cos(2θπ2)=12b)cosθ3sinθ=0

Answered by MrW3 last updated on 30/Jun/18

0≤θ≤π  −(π/2)≤2θ−(π/2)≤((3π)/2)  (a)  cos (2θ − (π/2))= (1/2)  ⇒2θ − (π/2)= −(π/3), (π/3)  ⇒θ=(1/2)((π/2)−(π/3))=(π/(12))  ⇒θ=(1/2)((π/2)+(π/3))=((5π)/(12))  (b)  cos θ − (√3) sin θ = 0  ⇒tan θ=(1/(√3))  ⇒θ=(π/6)

0θππ22θπ23π2(a)cos(2θπ2)=122θπ2=π3,π3θ=12(π2π3)=π12θ=12(π2+π3)=5π12(b)cosθ3sinθ=0tanθ=13θ=π6

Terms of Service

Privacy Policy

Contact: info@tinkutara.com