Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 38893 by gunawan last updated on 01/Jul/18

lim_(x→0)  ((x(a+b cos x)−c sin x)/x^5 )=1  find the value a,b, and c

limx0x(a+bcosx)csinxx5=1findthevaluea,b,andc

Answered by tanmay.chaudhury50@gmail.com last updated on 01/Jul/18

lim_(x→0) ((ax+bx(1−(x^2 /(2!))+(x^4 /(4!))+...)−c((x/1)−(x^3 /(3!))+(x^5 /(5!))+..))/x^5 )  =lim_(x→0) ((x(a+b−c)+b(((−x^3 )/(2!))+(x^5 /(4!))+..)−c(−(x^3 /(3!))+(x^5 /(5!))..))/x^5 )  ((lim)/(x→0))(((a+b−c)+b(−((3x^2 )/(2!))+((5x^4 )/(4!))+..)−c(((−3x^2 )/(3!))+((5x^4 )/(5!))+..)/(5x^4 ))  so for((0/0)) form a+b−c=0.....eqn 1  =lim_(x→0) ((b(−(3/(2!))+((5x^2 )/(4!))+..)−c(((−3)/(3!))+((5x^2 )/(5!))+..))/(5x^2 ))  b(−(3/(2!)))+c((3/(3!)))=0   for((0/0)) form  (c/2)−((3b)/2)=0   c=3b  lim_(x→0) ((b(((5x^2 )/(4!))+..)−c(((5x^2 )/(5!))+..))/(5x^2 ))=1    (b/(4!))−(c/(5!))=1     (b/(24))−(c/(120))=1  (b/(24))−((3b)/(120))=1     (b/(24))−(b/(40))=1     so ((5b−3b)/(3×8×5))=1    2b=3×8×5    b=60    c=3×60=180  a+b−c=0   a=c−b  a=180−60=120

limx0ax+bx(1x22!+x44!+...)c(x1x33!+x55!+..)x5=limx0x(a+bc)+b(x32!+x54!+..)c(x33!+x55!..)x5limx0(a+bc)+b(3x22!+5x44!+..)c(3x23!+5x45!+..5x4sofor(00)forma+bc=0.....eqn1=limx0b(32!+5x24!+..)c(33!+5x25!+..)5x2b(32!)+c(33!)=0for(00)formc23b2=0c=3blimx0b(5x24!+..)c(5x25!+..)5x2=1b4!c5!=1b24c120=1b243b120=1b24b40=1so5b3b3×8×5=12b=3×8×5b=60c=3×60=180a+bc=0a=cba=18060=120

Terms of Service

Privacy Policy

Contact: info@tinkutara.com