Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38899 by math khazana by abdo last updated on 01/Jul/18

find ∫_0 ^π ln(2+cost)dt and ∫_0 ^π ln(2−cost)dt

find0πln(2+cost)dtand0πln(2cost)dt

Commented by maxmathsup by imad last updated on 11/Jul/18

let I = ∫_0 ^π  ln(2+cost)dt  I =πln(2)  +∫_0 ^π ln(1 +(1/2) cost)t   let ntroduce the parametric function  f(x) = ∫_0 ^π ln(1+xcost)dt we have  I =f((1/2))  (we take ∣x∣<1)  f^′ (x) = ∫_0 ^π   ((cost)/(1+x cost))dt = (1/x) ∫_0 ^π    ((1+xcost −1)/(1+x cost))dt  =(π/x) −(1/x) ∫_0 ^π    (dt/(1 +x cost)) dt but changement tan((t/2))=u give  ∫_0 ^π    (dt/(1+x cost)) = ∫_0 ^∞     (1/(1+x((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 ))  =∫_0 ^∞        ((2du)/(1+u^2  +x(1−u^2 ))) = ∫_0 ^∞      ((2du)/(1+x +(1−x)u^2 ))   =(2/(1+x)) ∫_0 ^∞      (du/(1+((1−x)/(1+x))u^2 )) =_((√(((1−x)/(1+x))u))=α)    (2/(1+x)) ∫_0 ^∞       (1/(1+α^2 )) (√((1+x)/(1−x)))dα  = (2/(√(1−x^2 ))) (π/2)  = (π/(√(1−x^2 ))) ⇒ f^′ (x) = (π/x)  −(1/x) (π/(√(1−x^2 ))) ⇒  f(x) = πln∣x∣  − π  ∫_     (dx/(x(√(1−x^2 )))) +c  ∫     (dx/(x(√(1−x^2 ))))  =_(x=sinθ)    ∫      ((cosθ dθ)/(sinθ cosθ)) = ∫    (dθ/(sinθ)) =_(tan((θ/2))=u)   ∫   (1/((2u)/(1+u^2 ))) ((2du)/(1+u^2 ))  =∫  (du/u) =ln∣u∣ =ln∣tan((θ/2))∣ = ln∣ tan( ((arcinx)/(2 )))∣ ⇒  f(x) =π ln∣x∣ −π ln∣tan(((arcsinx)/2))∣ +c    we have f(1) =c = ∫_0 ^π ln(1+cosx)dx =∫_0 ^π ln(2cos^2 ((x/2)))dx  =πln(2)  +2 ∫_0 ^π  ln( cos((x/2)))dx  =_((x/2)=t)    πln(2) +2 ∫_0 ^(π/2)  ln(cost) (2dt)=πln(2) +4(−(π/2)ln(2))  =−π ln(2) ⇒ f(x)=πln∣x∣ −πln∣ tan( ((arcsinx)/2))∣ −πln(2)  I =f((1/2)) =−2πln(2) −π ln∣ tan((π/(12)))∣  cos^2 ((π/(12))) = ((1+cos((π/6)))/2) = ((1+((√3)/2))/2) =((2+(√3))/4) ⇒cos((π/(12)))=((√(2+(√3)))/2)  sin^2 ((π/(12))) = ((1−cos((π/6)))/2) =((1−((√3)/2))/2) =((2−(√3))/4) ⇒sin((π/(12))) =((√(2−(√3)))/2)  tan((π/(12))) = ((√(2−(√3)))/(√(2+(√3)))) = ((2−(√3))/(√(4−3))) =2−(√3).⇒  I  =−2πln(2)−π ln(2−(√3))

letI=0πln(2+cost)dtI=πln(2)+0πln(1+12cost)tletntroducetheparametricfunctionf(x)=0πln(1+xcost)dtwehaveI=f(12)(wetakex∣<1)f(x)=0πcost1+xcostdt=1x0π1+xcost11+xcostdt=πx1x0πdt1+xcostdtbutchangementtan(t2)=ugive0πdt1+xcost=011+x1u21+u22du1+u2=02du1+u2+x(1u2)=02du1+x+(1x)u2=21+x0du1+1x1+xu2=1x1+xu=α21+x011+α21+x1xdα=21x2π2=π1x2f(x)=πx1xπ1x2f(x)=πlnxπdxx1x2+cdxx1x2=x=sinθcosθdθsinθcosθ=dθsinθ=tan(θ2)=u12u1+u22du1+u2=duu=lnu=lntan(θ2)=lntan(arcinx2)f(x)=πlnxπlntan(arcsinx2)+cwehavef(1)=c=0πln(1+cosx)dx=0πln(2cos2(x2))dx=πln(2)+20πln(cos(x2))dx=x2=tπln(2)+20π2ln(cost)(2dt)=πln(2)+4(π2ln(2))=πln(2)f(x)=πlnxπlntan(arcsinx2)πln(2)I=f(12)=2πln(2)πlntan(π12)cos2(π12)=1+cos(π6)2=1+322=2+34cos(π12)=2+32sin2(π12)=1cos(π6)2=1322=234sin(π12)=232tan(π12)=232+3=2343=23.I=2πln(2)πln(23)

Commented by maxmathsup by imad last updated on 11/Jul/18

let  J  = ∫_0 ^π  ln(2−cost)dt  J = π ln(2) + ∫_0 ^π   ln(1−(1/2)cost)dt =πln(2) +f(−(1/2))  =πln(2) +f((1/2)) ( f is odd)  =πln(2) −2πln(2) −πln(2−(√3))=−π ln(2)−πln(2−(√3))

letJ=0πln(2cost)dtJ=πln(2)+0πln(112cost)dt=πln(2)+f(12)=πln(2)+f(12)(fisodd)=πln(2)2πln(2)πln(23)=πln(2)πln(23)

Commented by maxmathsup by imad last updated on 11/Jul/18

I = πln(2) +f((1/2)) =−π ln(2)−πln(2−(√3)) .

I=πln(2)+f(12)=πln(2)πln(23).

Commented by maxmathsup by imad last updated on 11/Jul/18

f is even .

fiseven.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com