Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 38907 by ajfour last updated on 01/Jul/18

(√(c^2 +x^2 )) = 1+(c/x)  how many complex roots ?

$$\sqrt{{c}^{\mathrm{2}} +{x}^{\mathrm{2}} }\:=\:\mathrm{1}+\frac{{c}}{{x}} \\ $$$${how}\:{many}\:{complex}\:{roots}\:? \\ $$

Commented by ajfour last updated on 01/Jul/18

Commented by MJS last updated on 01/Jul/18

(√(c^2 +x^2 ))=((c+x)/x) has only 3 roots. if you square  to solve it, you get 4 roots of which one is no  solution of the original equation

$$\sqrt{{c}^{\mathrm{2}} +{x}^{\mathrm{2}} }=\frac{{c}+{x}}{{x}}\:\mathrm{has}\:\mathrm{only}\:\mathrm{3}\:\mathrm{roots}.\:\mathrm{if}\:\mathrm{you}\:\mathrm{square} \\ $$$$\mathrm{to}\:\mathrm{solve}\:\mathrm{it},\:\mathrm{you}\:\mathrm{get}\:\mathrm{4}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{which}\:\mathrm{one}\:\mathrm{is}\:\mathrm{no} \\ $$$$\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{original}\:\mathrm{equation} \\ $$

Commented by MrW3 last updated on 01/Jul/18

You′re right sir. So the answer is:  depending on the value of c, the  original eqn. has either none or two  complex roots.

$${You}'{re}\:{right}\:{sir}.\:{So}\:{the}\:{answer}\:{is}: \\ $$$${depending}\:{on}\:{the}\:{value}\:{of}\:{c},\:{the} \\ $$$${original}\:{eqn}.\:{has}\:{either}\:{none}\:{or}\:{two} \\ $$$${complex}\:{roots}. \\ $$

Commented by ajfour last updated on 01/Jul/18

Thanks for the truth, sir.

$${Thanks}\:{for}\:{the}\:{truth},\:{sir}. \\ $$

Commented by MJS last updated on 01/Jul/18

we can find the value of c=c with  c=c ⇒ f(x)=(√(x^2 +c^2 ))−((x+c)/x)=0 has exactly 2 real solutions  c<c ⇒ f(x)=0 has 3 real solutions  c>c ⇒ f(x)=0 has 1 real and 2 complex solutions    x^4 +(c^2 −1)x^2 −2cx−c^2 =0  (x−α)^2 (x+α−β)(x+α+β)=0  it′s the same way as several times before, in  this special case we get 3 equations in α, β, c  with α>0, β>0, c<0 and β^2  is the only real  solution of a polynome of 3^(rd)  degree.  x=−α+β should be the “wrong” solution I guess  I might post it later but it should be easy to  solve

$$\mathrm{we}\:\mathrm{can}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{c}=\mathfrak{c}\:\mathrm{with} \\ $$$${c}=\mathfrak{c}\:\Rightarrow\:{f}\left({x}\right)=\sqrt{{x}^{\mathrm{2}} +{c}^{\mathrm{2}} }−\frac{{x}+{c}}{{x}}=\mathrm{0}\:\mathrm{has}\:\mathrm{exactly}\:\mathrm{2}\:\mathrm{real}\:\mathrm{solutions} \\ $$$${c}<\mathfrak{c}\:\Rightarrow\:{f}\left({x}\right)=\mathrm{0}\:\mathrm{has}\:\mathrm{3}\:\mathrm{real}\:\mathrm{solutions} \\ $$$${c}>\mathfrak{c}\:\Rightarrow\:{f}\left({x}\right)=\mathrm{0}\:\mathrm{has}\:\mathrm{1}\:\mathrm{real}\:\mathrm{and}\:\mathrm{2}\:\mathrm{complex}\:\mathrm{solutions} \\ $$$$ \\ $$$${x}^{\mathrm{4}} +\left(\mathfrak{c}^{\mathrm{2}} −\mathrm{1}\right){x}^{\mathrm{2}} −\mathrm{2}\mathfrak{c}{x}−\mathfrak{c}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left({x}−\alpha\right)^{\mathrm{2}} \left({x}+\alpha−\beta\right)\left({x}+\alpha+\beta\right)=\mathrm{0} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{the}\:\mathrm{same}\:\mathrm{way}\:\mathrm{as}\:\mathrm{several}\:\mathrm{times}\:\mathrm{before},\:\mathrm{in} \\ $$$$\mathrm{this}\:\mathrm{special}\:\mathrm{case}\:\mathrm{we}\:\mathrm{get}\:\mathrm{3}\:\mathrm{equations}\:\mathrm{in}\:\alpha,\:\beta,\:\mathfrak{c} \\ $$$$\mathrm{with}\:\alpha>\mathrm{0},\:\beta>\mathrm{0},\:\mathfrak{c}<\mathrm{0}\:\mathrm{and}\:\beta^{\mathrm{2}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{only}\:\mathrm{real} \\ $$$$\mathrm{solution}\:\mathrm{of}\:\mathrm{a}\:\mathrm{polynome}\:\mathrm{of}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{degree}. \\ $$$${x}=−\alpha+\beta\:\mathrm{should}\:\mathrm{be}\:\mathrm{the}\:``\mathrm{wrong}''\:\mathrm{solution}\:\mathrm{I}\:\mathrm{guess} \\ $$$$\mathrm{I}\:\mathrm{might}\:\mathrm{post}\:\mathrm{it}\:\mathrm{later}\:\mathrm{but}\:\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:\mathrm{easy}\:\mathrm{to} \\ $$$$\mathrm{solve} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 01/Jul/18

c^2 +x^2 =1+((2c)/x)+(c^2 /x^2 )  c^2 +x^2 =((x^2 +2cx+c^2 )/x^2 )  x^2 c^2 +x^4 =x^2 +2cx+c^2   x^4 +x^2 (c^2 −1)−2cx−c^2 =0  f(x)=x^4 +0.x^3 +(c^2 −1)x^2 −2cx−c^2   let c^2 >1 using Descarts rule of sign  one sign change so one positive root  f(−x)=x^4 +0.(−x^3 )+(c^2 −1)x^2 +2cx−c^2   one sign change so one negdtive root  so 4−1−1=2 complx root  now if c^2 <1  f(x)=x^4 +0.x^3 −(1−c^2 )x^2 +2cx−c^2   2+ve root  f(−x)=x^4 −(1−c^2 )x^2 −2cx−c^2   1(−ve)root  so one complex root

$${c}^{\mathrm{2}} +{x}^{\mathrm{2}} =\mathrm{1}+\frac{\mathrm{2}{c}}{{x}}+\frac{{c}^{\mathrm{2}} }{{x}^{\mathrm{2}} } \\ $$$${c}^{\mathrm{2}} +{x}^{\mathrm{2}} =\frac{{x}^{\mathrm{2}} +\mathrm{2}{cx}+{c}^{\mathrm{2}} }{{x}^{\mathrm{2}} } \\ $$$${x}^{\mathrm{2}} {c}^{\mathrm{2}} +{x}^{\mathrm{4}} ={x}^{\mathrm{2}} +\mathrm{2}{cx}+{c}^{\mathrm{2}} \\ $$$${x}^{\mathrm{4}} +{x}^{\mathrm{2}} \left({c}^{\mathrm{2}} −\mathrm{1}\right)−\mathrm{2}{cx}−{c}^{\mathrm{2}} =\mathrm{0} \\ $$$${f}\left({x}\right)={x}^{\mathrm{4}} +\mathrm{0}.{x}^{\mathrm{3}} +\left({c}^{\mathrm{2}} −\mathrm{1}\right){x}^{\mathrm{2}} −\mathrm{2}{cx}−{c}^{\mathrm{2}} \\ $$$${let}\:{c}^{\mathrm{2}} >\mathrm{1}\:{using}\:{Descarts}\:{rule}\:{of}\:{sign} \\ $$$${one}\:{sign}\:{change}\:{so}\:{one}\:{positive}\:{root} \\ $$$${f}\left(−{x}\right)={x}^{\mathrm{4}} +\mathrm{0}.\left(−{x}^{\mathrm{3}} \right)+\left({c}^{\mathrm{2}} −\mathrm{1}\right){x}^{\mathrm{2}} +\mathrm{2}{cx}−{c}^{\mathrm{2}} \\ $$$${one}\:{sign}\:{change}\:{so}\:{one}\:{negdtive}\:{root} \\ $$$${so}\:\mathrm{4}−\mathrm{1}−\mathrm{1}=\mathrm{2}\:{complx}\:{root} \\ $$$${now}\:{if}\:{c}^{\mathrm{2}} <\mathrm{1} \\ $$$${f}\left({x}\right)={x}^{\mathrm{4}} +\mathrm{0}.{x}^{\mathrm{3}} −\left(\mathrm{1}−{c}^{\mathrm{2}} \right){x}^{\mathrm{2}} +\mathrm{2}{cx}−{c}^{\mathrm{2}} \\ $$$$\mathrm{2}+{ve}\:{root} \\ $$$${f}\left(−{x}\right)={x}^{\mathrm{4}} −\left(\mathrm{1}−{c}^{\mathrm{2}} \right){x}^{\mathrm{2}} −\mathrm{2}{cx}−{c}^{\mathrm{2}} \\ $$$$\mathrm{1}\left(−{ve}\right){root} \\ $$$${so}\:{one}\:{complex}\:{root} \\ $$

Commented by ajfour last updated on 01/Jul/18

Thank you very much, Sir Tanmay.

$${Thank}\:{you}\:{very}\:{much},\:{Sir}\:{Tanmay}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com