Question and Answers Forum

All Questions      Topic List

Optics Questions

Previous in All Question      Next in All Question      

Previous in Optics      Next in Optics      

Question Number 38923 by NECx last updated on 01/Jul/18

A glass prism made from a material  of refractive index 1.55 has a  refracting angle of 60°.The prism  is immersed in water of refractive  index 1.33.Determine the angle of  minimum deviation for a parallel  beam of light passing through the  prism.

$${A}\:{glass}\:{prism}\:{made}\:{from}\:{a}\:{material} \\ $$$${of}\:{refractive}\:{index}\:\mathrm{1}.\mathrm{55}\:{has}\:{a} \\ $$$${refracting}\:{angle}\:{of}\:\mathrm{60}°.{The}\:{prism} \\ $$$${is}\:{immersed}\:{in}\:{water}\:{of}\:{refractive} \\ $$$${index}\:\mathrm{1}.\mathrm{33}.{Determine}\:{the}\:{angle}\:{of} \\ $$$${minimum}\:{deviation}\:{for}\:{a}\:{parallel} \\ $$$${beam}\:{of}\:{light}\:{passing}\:{through}\:{the} \\ $$$${prism}. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 01/Jul/18

μ=((sin(((A+δ_m )/2)))/(sin((A/2))))  ((1.55)/(1.33))=((sin(((60^o +δ_m )/2)))/(1/2))  sin(((60^o +δ_m )/2))=((1.55)/(2×1.33))=0.58≈sin36^o   δ_m =12^o   μ_w ×sini_1 =μ_g ×sinr_1   δ=i_1 +i_2 −A  r_1 ^ =r_2 =(A/2)   when deviation minimum  i_1 =i_2 =((δ_m +A)/2)  μ_w sin(((δ_m +A)/2))=μ_g sin((A/2))  1.33×sin(((δ_m +60^o )/2))=1.55sin(((60^o )/2))  sin(((δ_m +60^o )/2))=((1.55)/(2×1.33))≈sin36^o   δ_m =12^o

$$\mu=\frac{{sin}\left(\frac{{A}+\delta_{{m}} }{\mathrm{2}}\right)}{{sin}\left(\frac{{A}}{\mathrm{2}}\right)} \\ $$$$\frac{\mathrm{1}.\mathrm{55}}{\mathrm{1}.\mathrm{33}}=\frac{{sin}\left(\frac{\mathrm{60}^{{o}} +\delta_{{m}} }{\mathrm{2}}\right)}{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${sin}\left(\frac{\mathrm{60}^{{o}} +\delta_{{m}} }{\mathrm{2}}\right)=\frac{\mathrm{1}.\mathrm{55}}{\mathrm{2}×\mathrm{1}.\mathrm{33}}=\mathrm{0}.\mathrm{58}\approx{sin}\mathrm{36}^{{o}} \\ $$$$\delta_{{m}} =\mathrm{12}^{{o}} \\ $$$$\mu_{{w}} ×{sini}_{\mathrm{1}} =\mu_{{g}} ×{sinr}_{\mathrm{1}} \\ $$$$\delta={i}_{\mathrm{1}} +{i}_{\mathrm{2}} −{A} \\ $$$$\overset{} {{r}}_{\mathrm{1}} ={r}_{\mathrm{2}} =\frac{{A}}{\mathrm{2}}\:\:\:{when}\:{deviation}\:{minimum} \\ $$$${i}_{\mathrm{1}} ={i}_{\mathrm{2}} =\frac{\delta_{{m}} +{A}}{\mathrm{2}} \\ $$$$\mu_{{w}} {sin}\left(\frac{\delta_{{m}} +{A}}{\mathrm{2}}\right)=\mu_{{g}} {sin}\left(\frac{{A}}{\mathrm{2}}\right) \\ $$$$\mathrm{1}.\mathrm{33}×{sin}\left(\frac{\delta_{{m}} +\mathrm{60}^{{o}} }{\mathrm{2}}\right)=\mathrm{1}.\mathrm{55}{sin}\left(\frac{\mathrm{60}^{{o}} }{\mathrm{2}}\right) \\ $$$${sin}\left(\frac{\delta_{{m}} +\mathrm{60}^{{o}} }{\mathrm{2}}\right)=\frac{\mathrm{1}.\mathrm{55}}{\mathrm{2}×\mathrm{1}.\mathrm{33}}\approx{sin}\mathrm{36}^{{o}} \\ $$$$\delta_{{m}} =\mathrm{12}^{{o}} \\ $$$$ \\ $$

Commented by NECx last updated on 04/Jul/18

wow....Thank you sir

$${wow}....{Thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com