All Questions Topic List
Geometry Questions
Previous in All Question Next in All Question
Previous in Geometry Next in Geometry
Question Number 3900 by Filup last updated on 24/Dec/15
Iaskedthisquestionawhileago,butIforgothowtosolveit:S=∫0n⌊x⌋dx
Answered by Yozzii last updated on 24/Dec/15
0⩽x<1⇒⌊x⌋=0⇒A1=0×(1−0)=01⩽x<2⇒⌊x⌋=1⇒A2=1(2−1)=12⩽x<3⇒⌊x⌋=2⇒A3=2(3−2)=23⩽x<4⇒⌊x⌋=3⇒A4=3(4−3)=3⋮n−2⩽x<n−1⇒⌊x⌋=n−2⇒An−1=n−2n−1⩽x<n⇒⌊x⌋=n−1⇒An=n−1S=∫0n⌊x⌋dxBythegeometricalinterpretationoftheintegral,S=∑ni=1Ai=0+1+2+3+...+n−1=n(n−1)2.Alternatively,fori∈N,S=∑ni=1{∫i−1i⌊x⌋dx}S=∑ni=1{∫i−1i(i−1)dx}(i−1⩽x<i⇒⌊x⌋=i−1)S=∑ni=1(i−1)(x∣i−1i)S=∑ni=1(i−1)(i−i+1)S=∑ni=1(i−1)=n(n+1)2−n=n(n−1)2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com