Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 3900 by Filup last updated on 24/Dec/15

I asked this question a while ago,  but I forgot how to solve it:    S=∫_0 ^( n) ⌊x⌋dx

$$\mathrm{I}\:\mathrm{asked}\:\mathrm{this}\:\mathrm{question}\:\mathrm{a}\:\mathrm{while}\:\mathrm{ago}, \\ $$$$\mathrm{but}\:\mathrm{I}\:\mathrm{forgot}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{it}: \\ $$$$ \\ $$$${S}=\int_{\mathrm{0}} ^{\:{n}} \lfloor{x}\rfloor{dx} \\ $$

Answered by Yozzii last updated on 24/Dec/15

0≤x<1⇒⌊x⌋=0⇒A_1 =0×(1−0)=0  1≤x<2⇒⌊x⌋=1⇒A_2 =1(2−1)=1  2≤x<3⇒⌊x⌋=2⇒A_3 =2(3−2)=2  3≤x<4⇒⌊x⌋=3⇒A_4 =3(4−3)=3  ⋮  n−2≤x<n−1⇒⌊x⌋=n−2⇒A_(n−1) =n−2  n−1≤x<n⇒⌊x⌋=n−1⇒A_n =n−1  S=∫_0 ^n ⌊x⌋dx  By the geometrical interpretation of  the integral,  S=Σ_(i=1) ^n A_i =0+1+2+3+...+n−1=((n(n−1))/2).    Alternatively, for i∈N,  S=Σ_(i=1) ^n {∫_(i−1) ^i ⌊x⌋dx}  S=Σ_(i=1) ^n {∫_(i−1) ^i (i−1)dx}      (i−1≤x<i⇒⌊x⌋=i−1)  S=Σ_(i=1) ^n (i−1)(x∣_(i−1) ^i )  S=Σ_(i=1) ^n (i−1)(i−i+1)  S=Σ_(i=1) ^n (i−1)=((n(n+1))/2)−n=((n(n−1))/2)

$$\mathrm{0}\leqslant{x}<\mathrm{1}\Rightarrow\lfloor{x}\rfloor=\mathrm{0}\Rightarrow{A}_{\mathrm{1}} =\mathrm{0}×\left(\mathrm{1}−\mathrm{0}\right)=\mathrm{0} \\ $$$$\mathrm{1}\leqslant{x}<\mathrm{2}\Rightarrow\lfloor{x}\rfloor=\mathrm{1}\Rightarrow{A}_{\mathrm{2}} =\mathrm{1}\left(\mathrm{2}−\mathrm{1}\right)=\mathrm{1} \\ $$$$\mathrm{2}\leqslant{x}<\mathrm{3}\Rightarrow\lfloor{x}\rfloor=\mathrm{2}\Rightarrow{A}_{\mathrm{3}} =\mathrm{2}\left(\mathrm{3}−\mathrm{2}\right)=\mathrm{2} \\ $$$$\mathrm{3}\leqslant{x}<\mathrm{4}\Rightarrow\lfloor{x}\rfloor=\mathrm{3}\Rightarrow{A}_{\mathrm{4}} =\mathrm{3}\left(\mathrm{4}−\mathrm{3}\right)=\mathrm{3} \\ $$$$\vdots \\ $$$${n}−\mathrm{2}\leqslant{x}<{n}−\mathrm{1}\Rightarrow\lfloor{x}\rfloor={n}−\mathrm{2}\Rightarrow{A}_{{n}−\mathrm{1}} ={n}−\mathrm{2} \\ $$$${n}−\mathrm{1}\leqslant{x}<{n}\Rightarrow\lfloor{x}\rfloor={n}−\mathrm{1}\Rightarrow{A}_{{n}} ={n}−\mathrm{1} \\ $$$${S}=\int_{\mathrm{0}} ^{{n}} \lfloor{x}\rfloor{dx} \\ $$$${By}\:{the}\:{geometrical}\:{interpretation}\:{of} \\ $$$${the}\:{integral}, \\ $$$${S}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{A}_{{i}} =\mathrm{0}+\mathrm{1}+\mathrm{2}+\mathrm{3}+...+{n}−\mathrm{1}=\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}}. \\ $$$$ \\ $$$${Alternatively},\:{for}\:{i}\in\mathbb{N}, \\ $$$${S}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left\{\int_{{i}−\mathrm{1}} ^{{i}} \lfloor{x}\rfloor{dx}\right\} \\ $$$${S}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left\{\int_{{i}−\mathrm{1}} ^{{i}} \left({i}−\mathrm{1}\right){dx}\right\}\:\:\:\:\:\:\left({i}−\mathrm{1}\leqslant{x}<{i}\Rightarrow\lfloor{x}\rfloor={i}−\mathrm{1}\right) \\ $$$${S}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left({i}−\mathrm{1}\right)\left({x}\mid_{{i}−\mathrm{1}} ^{{i}} \right) \\ $$$${S}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left({i}−\mathrm{1}\right)\left({i}−{i}+\mathrm{1}\right) \\ $$$${S}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left({i}−\mathrm{1}\right)=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}−{n}=\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com