All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 39020 by maxmathsup by imad last updated on 01/Jul/18
calculate∫01ln(1+x2+1)x2+1dx
Answered by behi83417@gmail.com last updated on 02/Jul/18
x=tgt⇒dx=(1+tg2t)dtI=∫ln(1+sect)sect.sec2tdt==∫sect.ln(1+sect)dt=sect.ln(1+sect)−∫sect.sint.sec2t1+sectdt==do−∫sint.1cos3t1+1costdt=do−∫sintdtcos3t+cos2tcost=u⇒∫−sintdtcos3t+cos2t=∫duu3+u2==∫duu2(u+1)=∫[−1u+1u2+1u+1]du=−lnu−u+ln(u+1)+c==−lncost−cost+ln(1+cost)+c==ln1+costcost−cost+c=ln(1+sect)−cost+c⇒I=1+x2.ln(1+1+x2)+ln(1+1+x2)−11+x2+c==(1+1+x2)ln(1+1+x2)−11+x2+c.◼
Terms of Service
Privacy Policy
Contact: info@tinkutara.com