Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 39020 by maxmathsup by imad last updated on 01/Jul/18

calculate  ∫_0 ^1   ((ln(1+(√(x^2  +1))))/(√(x^2  +1))) dx

$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left(\mathrm{1}+\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}}\right)}{\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}}}\:{dx} \\ $$

Answered by behi83417@gmail.com last updated on 02/Jul/18

x=tgt⇒dx=(1+tg^2 t)dt  I=∫((ln(1+sect))/(sect)).sec^2 tdt=  =∫sect.ln(1+sect)dt=  sect.ln(1+sect)−∫sect.((sint.sec^2 t)/(1+sect))dt=  =do−∫((sint.(1/(cos^3 t)))/(1+(1/(cost))))dt=do−∫((sintdt)/(cos^3 t+cos^2 t))  cost=u⇒∫((−sintdt)/(cos^3 t+cos^2 t))=∫(du/(u^3 +u^2 ))=  =∫(du/(u^2 (u+1)))=∫[((−1)/u)+(1/u^2 )+(1/(u+1))]du  =−lnu−u+ln(u+1)+c=  =−lncost−cost+ln(1+cost)+c=  =ln((1+cost)/(cost))−cost+c=ln(1+sect)−cost+c  ⇒I=(√(1+x^2 )).ln(1+(√(1+x^2 )))+ln(1+(√(1+x^2 )))−(1/(√(1+x^2 )))+c=  =(1+(√(1+x^2 )))ln(1+(√(1+x^2 )))−(1/(√(1+x^2 )))+c.■

$${x}={tgt}\Rightarrow{dx}=\left(\mathrm{1}+{tg}^{\mathrm{2}} {t}\right){dt} \\ $$$${I}=\int\frac{{ln}\left(\mathrm{1}+{sect}\right)}{{sect}}.{sec}^{\mathrm{2}} {tdt}= \\ $$$$=\int{sect}.{ln}\left(\mathrm{1}+{sect}\right){dt}= \\ $$$${sect}.{ln}\left(\mathrm{1}+{sect}\right)−\int{sect}.\frac{{sint}.{sec}^{\mathrm{2}} {t}}{\mathrm{1}+{sect}}{dt}= \\ $$$$={do}−\int\frac{{sint}.\frac{\mathrm{1}}{{cos}^{\mathrm{3}} {t}}}{\mathrm{1}+\frac{\mathrm{1}}{{cost}}}{dt}={do}−\int\frac{{sintdt}}{{cos}^{\mathrm{3}} {t}+{cos}^{\mathrm{2}} {t}} \\ $$$${cost}={u}\Rightarrow\int\frac{−{sintdt}}{{cos}^{\mathrm{3}} {t}+{cos}^{\mathrm{2}} {t}}=\int\frac{{du}}{{u}^{\mathrm{3}} +{u}^{\mathrm{2}} }= \\ $$$$=\int\frac{{du}}{{u}^{\mathrm{2}} \left({u}+\mathrm{1}\right)}=\int\left[\frac{−\mathrm{1}}{{u}}+\frac{\mathrm{1}}{{u}^{\mathrm{2}} }+\frac{\mathrm{1}}{{u}+\mathrm{1}}\right]{du} \\ $$$$=−{lnu}−{u}+{ln}\left({u}+\mathrm{1}\right)+{c}= \\ $$$$=−{lncost}−{cost}+{ln}\left(\mathrm{1}+{cost}\right)+{c}= \\ $$$$={ln}\frac{\mathrm{1}+{cost}}{{cost}}−{cost}+{c}={ln}\left(\mathrm{1}+{sect}\right)−{cost}+{c} \\ $$$$\Rightarrow{I}=\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }.\boldsymbol{{ln}}\left(\mathrm{1}+\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }\right)+\boldsymbol{{ln}}\left(\mathrm{1}+\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }\right)−\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }}+\boldsymbol{{c}}= \\ $$$$=\left(\mathrm{1}+\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }\right)\boldsymbol{{ln}}\left(\mathrm{1}+\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }\right)−\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }}+\boldsymbol{{c}}.\blacksquare \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com