All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 39023 by maxmathsup by imad last updated on 01/Jul/18
letg(x)=∫−∞+∞arctan(x(1+t2))1+t2dtwithx>0 findasimpleformofg(x).
Commented bymath khazana by abdo last updated on 08/Jul/18
wehaveg′(x)=∫−∞+∞11+x2(1+t2)2dt =∫−∞+∞dt(x(1+t2)−i)(x(1+t2)+i) =∫−∞+∞dt(xt2+x−i)(xt2+x+i) letφ(z)=1(xz2+x−i)(xz2+x+i) φ(z)=1x2(z2+1−ix)(z2+1+ix) =1x2(z−i1−ix)(z+i1−ix)(z−i1+ix)(z+i1+ix) wehave∣1−ix∣=1+1x2=x2+1x 1−ix=x2+1x(xx2+1−ixxx2+1) =reiθ⇒r=x2+1xandcosθ=xx2+1 sinθ=−1x2+1⇒tanθ=−1x⇒ θ=−arctan(x)⇒1−ix=r(x)e−iarctan(1x) 1−ix=r(x)e−i2arctan(1x)and 1+ix=r(x)ei2arctan(1x) i1−ix=r(x)eiπ2−i2arctan(1x) =r(x)=r(x)ei(π2−12(π2−arctanx)) =r(x)ei(π4+12arctan(x))also i1+ix=r(x)eiπ2+i2arctan(1x) =r(x)ei(π2+12(π2−arctanx)) =r(x)ei(3π4−12actan(x))....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com