Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 39023 by maxmathsup by imad last updated on 01/Jul/18

let g(x)= ∫_(−∞) ^(+∞)    ((arctan(x(1+t^2 )))/(1+t^2 ))dt   with x>0  find a simple form of g(x) .

letg(x)=+arctan(x(1+t2))1+t2dtwithx>0 findasimpleformofg(x).

Commented bymath khazana by abdo last updated on 08/Jul/18

we have g^′ (x) = ∫_(−∞) ^(+∞)    (1/(1+x^2 (1+t^2 )^2 ))dt  = ∫_(−∞) ^(+∞)      (dt/((x(1+t^2 )−i)(x(1+t^2 ) +i)))  = ∫_(−∞) ^(+∞)        (dt/((xt^2  +x−i)(xt^2  +x+i)))  let ϕ(z) =  (1/((xz^2  +x−i)(xz^2  +x+i)))  ϕ(z) =  (1/(x^2 (z^2  +1−(i/x))(z^2   +1 +(i/x))))  =(1/(x^2 ( z −i(√(1−(i/x))))(z +i(√(1−(i/x))))(z−i(√(1+(i/x))))(z+i(√(1+(i/x))))))  we have ∣1−(i/x)∣ =(√(1+(1/x^2 ))) =((√(x^2  +1))/x)  1−(i/x) =((√(x^2  +1))/x)(  (x/(√(x^(2 )  +1))) −(i/x) (x/(√(x^2  +1))))  =r e^(iθ )   ⇒ r =((√(x^2  +1))/x)  and  cosθ = (x/(√(x^2  +1)))  sin θ =−(1/(√(x^2  +1)))  ⇒ tanθ = −(1/x) ⇒  θ =−arctan(x) ⇒1−(i/x) =r(x) e^(−i arctan((1/x)))   (√(1−(i/x)))=(√(r(x)))e^(−(i/2)arctan((1/x)))  and  (√(1+(i/x)))= (√(r(x))) e^((i/2)arctan((1/x)))   i(√(1−(i/x))) =(√(r(x))) e^(i(π/2)−(i/2)arctan((1/x)))   =(√(r(x)))=(√(r(x))) e^(i( (π/2) −(1/2)((π/2) −arctanx)))   =(√(r(x)))  e^(i((π/4) +(1/2)arctan(x)))   also  i(√(1+(i/x)))=(√(r(x))) e^(i(π/2) +(i/2)arctan((1/x)))   =(√(r(x)))  e^(i((π/2) + (1/2)((π/2) −arctanx)))   =(√(r(x))) e^(i( ((3π)/4) −(1/2) actan(x)))      ....be continued...

wehaveg(x)=+11+x2(1+t2)2dt =+dt(x(1+t2)i)(x(1+t2)+i) =+dt(xt2+xi)(xt2+x+i) letφ(z)=1(xz2+xi)(xz2+x+i) φ(z)=1x2(z2+1ix)(z2+1+ix) =1x2(zi1ix)(z+i1ix)(zi1+ix)(z+i1+ix) wehave1ix=1+1x2=x2+1x 1ix=x2+1x(xx2+1ixxx2+1) =reiθr=x2+1xandcosθ=xx2+1 sinθ=1x2+1tanθ=1x θ=arctan(x)1ix=r(x)eiarctan(1x) 1ix=r(x)ei2arctan(1x)and 1+ix=r(x)ei2arctan(1x) i1ix=r(x)eiπ2i2arctan(1x) =r(x)=r(x)ei(π212(π2arctanx)) =r(x)ei(π4+12arctan(x))also i1+ix=r(x)eiπ2+i2arctan(1x) =r(x)ei(π2+12(π2arctanx)) =r(x)ei(3π412actan(x))....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com