Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 39025 by maxmathsup by imad last updated on 01/Jul/18

let f(x)= ((cos(αx))/(cosx))    (2π periodic even)  developp f at fourier serie.

letf(x)=cos(αx)cosx(2πperiodiceven)developpfatfourierserie.

Commented by math khazana by abdo last updated on 05/Jul/18

f(x) =(a_0 /2) +Σ_(n=1) ^∞  a_n  cos(nx) with  a_n = (2/T) ∫_([T])   f(x)cos(nx) dx  =(2/(2π))  ∫_(−π) ^π   ((cos(αx)cos(nx))/(cosx))dx ⇒  π a_n   = (1/2) ∫_(−π) ^π   ((cos(n+α)x +cos(n−α)x)/(cosx))dx  2π a_n  = ∫_(−π) ^π   ((cos(n+α)x)/(cosx))dx  +∫_(−π) ^π  ((cos(n−α)x)/(cosx))dx  let find first I_λ  =∫_(−π) ^π  ((cos(λx))/(cosx))dx  I_λ   = Re( ∫_(−π) ^π   (e^(iλx) /(cosx))dx)   changement e^(ix) =z give  ∫_(−π) ^π   (e^(iλx) /(cosx)) dx = ∫_(∣z∣=1)    ((2z^λ )/(z+z^(−1) )) (dz/(iz))  = ∫_(∣z∣=1)     ((−2i z^λ )/(z^2  +1))dz   let ϕ(z) = ((−2iz^λ )/(z^(2 )  +1))  ∫_(∣z∣=1)  ϕ(z)dz =2iπ{ Res(ϕ,i) +Res(ϕ,−i)}  Res(ϕ,i)= ((−2i i^λ )/(2i)) = −i^λ   Res(ϕ^� ,−i) =((−2i (−i)^λ )/(−2i)) =(−i)^λ  ⇒  ∫_(∣z∣=1)    ϕ(z)dz =2iπ{ −i^λ  +(−i)^λ  }  =−2iπ{ i^λ  −(−i)^λ } =−2iπ 2i Im(i^λ )  =4π Im( cos(((λπ)/2)) +isin(((λπ)/2))} =4π sin(((λπ)/2)) ⇒  I_λ =4π sin(((λπ)/2)) ⇒  2π a_n = 4πsin((((n+α)π)/2)) +4π sin((((n−α)π)/2))⇒  a_n = (1/2){ sin((((n+α)π)/2)) +sin((((n−α)π)/2))}  a_0 =(1/π) ∫_(−π) ^π  ((cos(αx))/(cosx))dx =(1/π)4π sin(((απ)/2))  =4 sin((α/2)) ⇒(a_0 /2) = 2 sin((α/2)) ⇒  f(x) = 2sin((α/2)) +(1/2)Σ_(n=1) ^∞  {sin((((n+α)π)/2))+sin((((n−α)π)/2))}

f(x)=a02+n=1ancos(nx)withan=2T[T]f(x)cos(nx)dx=22πππcos(αx)cos(nx)cosxdxπan=12ππcos(n+α)x+cos(nα)xcosxdx2πan=ππcos(n+α)xcosxdx+ππcos(nα)xcosxdxletfindfirstIλ=ππcos(λx)cosxdxIλ=Re(ππeiλxcosxdx)changementeix=zgiveππeiλxcosxdx=z∣=12zλz+z1dziz=z∣=12izλz2+1dzletφ(z)=2izλz2+1z∣=1φ(z)dz=2iπ{Res(φ,i)+Res(φ,i)}Res(φ,i)=2iiλ2i=iλRes(φ¯,i)=2i(i)λ2i=(i)λz∣=1φ(z)dz=2iπ{iλ+(i)λ}=2iπ{iλ(i)λ}=2iπ2iIm(iλ)=4πIm(cos(λπ2)+isin(λπ2)}=4πsin(λπ2)Iλ=4πsin(λπ2)2πan=4πsin((n+α)π2)+4πsin((nα)π2)an=12{sin((n+α)π2)+sin((nα)π2)}a0=1πππcos(αx)cosxdx=1π4πsin(απ2)=4sin(α2)a02=2sin(α2)f(x)=2sin(α2)+12n=1{sin((n+α)π2)+sin((nα)π2)}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com