All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 39025 by maxmathsup by imad last updated on 01/Jul/18
letf(x)=cos(αx)cosx(2πperiodiceven)developpfatfourierserie.
Commented by math khazana by abdo last updated on 05/Jul/18
f(x)=a02+∑n=1∞ancos(nx)withan=2T∫[T]f(x)cos(nx)dx=22π∫−ππcos(αx)cos(nx)cosxdx⇒πan=12∫−ππcos(n+α)x+cos(n−α)xcosxdx2πan=∫−ππcos(n+α)xcosxdx+∫−ππcos(n−α)xcosxdxletfindfirstIλ=∫−ππcos(λx)cosxdxIλ=Re(∫−ππeiλxcosxdx)changementeix=zgive∫−ππeiλxcosxdx=∫∣z∣=12zλz+z−1dziz=∫∣z∣=1−2izλz2+1dzletφ(z)=−2izλz2+1∫∣z∣=1φ(z)dz=2iπ{Res(φ,i)+Res(φ,−i)}Res(φ,i)=−2iiλ2i=−iλRes(φ¯,−i)=−2i(−i)λ−2i=(−i)λ⇒∫∣z∣=1φ(z)dz=2iπ{−iλ+(−i)λ}=−2iπ{iλ−(−i)λ}=−2iπ2iIm(iλ)=4πIm(cos(λπ2)+isin(λπ2)}=4πsin(λπ2)⇒Iλ=4πsin(λπ2)⇒2πan=4πsin((n+α)π2)+4πsin((n−α)π2)⇒an=12{sin((n+α)π2)+sin((n−α)π2)}a0=1π∫−ππcos(αx)cosxdx=1π4πsin(απ2)=4sin(α2)⇒a02=2sin(α2)⇒f(x)=2sin(α2)+12∑n=1∞{sin((n+α)π2)+sin((n−α)π2)}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com