All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 39033 by maxmathsup by imad last updated on 01/Jul/18
calculate∫−∞+∞xsin(2x)(1+x2)2dx
Commented by math khazana by abdo last updated on 02/Jul/18
letI=∫−∞+∞xsin(2x)(1+x2)2dxI=Im(∫−∞+∞xeix(1+x2)2dx)letφ(z)=zeiz(1+z2)2φ(z)=zeiz(z−i)2(z+i)2∫−∞+∞φ(z)dz=2iπRes(φ,i)Res(φ,i)=limz→i1(2−1)!{(z−i)2φ(z)}(1)=limz→i{zeiz(z+i)2}(1)=limz→i(eiz+izeiz)(z+i)2−2(z+i)zeiz(z+i)4=limz→i(1+iz)eix(z+i)−2zeiz(z+i)3=−2ie−1(2i)3=−2ie−1−8i=e−14⇒∫−∞+∞φ(z)dz=2iπe−14=iπe−12⇒I=Im(∫−∞+∞φ(z)dz)=π2e.
theQisfindI=∫−∞+∞xsin(x)(1+x2)2dx
Terms of Service
Privacy Policy
Contact: info@tinkutara.com