Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 39034 by maxmathsup by imad last updated on 01/Jul/18

calculate interms of n  A_n = ∫_0 ^(2π)    ((cos(nx))/(cosx +sinx))dx  and B_n = ∫_0 ^(2π)    ((sin(nx))/(cosx +sinx))dx .

calculateintermsofnAn=02πcos(nx)cosx+sinxdxandBn=02πsin(nx)cosx+sinxdx.

Commented by math khazana by abdo last updated on 04/Jul/18

we have A_n =Re( ∫_0 ^(2π)   (e^(inx) /(cosx +sinx))dx)and  B_n =Im( ∫_0 ^(2π)   (e^(inx) /(cosx +sinx))dx) changement  e^(ix) =z give  ∫_0 ^(2π)    (e^(inx) /(cosx +sinx))dx = ∫_(∣z∣=1)  (z^n /(((z+z^(−1) )/2)+((z−z^(−1) )/(2i)))) (dz/(iz))  = ∫_(∣z∣=1)    ((−2iz^n )/(z(z+z^(−1) −i(z−z^(−1) ))))dz  = ∫_(∣z∣=1)    ((−2i z^n )/(z^2  +1−iz^2  +i))dz  = ∫_(∣z∣=1)     ((−2i z^n )/((1−i)z^2  +1+i))dz  =((−2i)/(1−i)) ∫_(∣z∣=1)     (z^n /(z^2  +((1+i)/(1−i))))  =((−2i(1+i))/2) ∫_(∣z∣=1)     (z^n /(z^2  +i))dz =(1−i) ∫_(∣z∣=1)   (z^n /(z^2  +i))dz  let ϕ(z)=(z^n /(z^2  +i)) ⇒ϕ(z) =(z^n /(z^2 −((√(−i)))^2 ))  = (z^n /((z−(√(−i)))(z+(√(−i))))) =(z^n /((z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ{ Res(ϕ,e^(−((iπ)/4)) ) +Res(ϕ,e^(−((iπ)/4)) )}  Res(ϕ, e^(−((iπ)/4)) ) =  (e^(−i((nπ)/4)) /(2e^(−i(π/4)) )) = (e^(−i(((n−1)π)/4)) /2)  Res(ϕ,−e^(−((iπ)/4)) )= (((−1)^n  e^(−i((nπ)/4)) )/(−2e^(−((iπ)/4)) ))  =−(((−1)^n )/2) e^(−i(((n−1)π)/4))  ⇒  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ{ (1/2) e^(−i(((n−1)π)/4))  −(((−1)^n )/2) e^(−i(((n−1)π)/4)) }  =iπ(1−(−1)^n ) e^(−i(((n−1)π)/4))   =iπ(1−(−1)^n ){cos((((n−1)π)/4))−i sin((((n−1)π)/4))}  =π(1−(−1)^n ){icos ((((n−1)π)/4))+sin((((n−1)π)/4))}⇒  ∫_0 ^(2π)    (e^(inx) /(cosx +sinx))dx =(1−i)iπ(1−(−1)^n )e^(−i(((n−1)π)/4))   =iπ(√2)(1−(−1)^n )e^(−i(π/4))  e^(−i(((n−1)π)/4))   =iπ(√2)(1−(−1)^n ) e^(−((inπ)/4))   =π(√2) (1−(−1)^n )i{cos(((nπ)/4))−i sin(((nπ)/4))}  =π(√2)(1−(−1)^n ){ i cos(((nπ)/4)) +sin(((nπ)/4))} ⇒  A_n =π(√2)(1−(−1)^n )sin(((nπ)/4))  and  B_n  =π(√2)(1−(−1)^n )cos(((nπ)/4)) ⇒  A_(2n) =0 and B_(2n) =0  A_(2n+1) =2π(√2)sin((((2n+1)π)/4))  and  B_(2n+1) =2π(√2)cos((((2n+1)π)/4)).

wehaveAn=Re(02πeinxcosx+sinxdx)andBn=Im(02πeinxcosx+sinxdx)changementeix=zgive02πeinxcosx+sinxdx=z∣=1znz+z12+zz12idziz=z∣=12iznz(z+z1i(zz1))dz=z∣=12iznz2+1iz2+idz=z∣=12izn(1i)z2+1+idz=2i1iz∣=1znz2+1+i1i=2i(1+i)2z∣=1znz2+idz=(1i)z∣=1znz2+idzletφ(z)=znz2+iφ(z)=znz2(i)2=zn(zi)(z+i)=zn(zeiπ4)(z+eiπ4)+φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,eiπ4)}Res(φ,eiπ4)=einπ42eiπ4=ei(n1)π42Res(φ,eiπ4)=(1)neinπ42eiπ4=(1)n2ei(n1)π4+φ(z)dz=2iπ{12ei(n1)π4(1)n2ei(n1)π4}=iπ(1(1)n)ei(n1)π4=iπ(1(1)n){cos((n1)π4)isin((n1)π4)}=π(1(1)n){icos((n1)π4)+sin((n1)π4)}02πeinxcosx+sinxdx=(1i)iπ(1(1)n)ei(n1)π4=iπ2(1(1)n)eiπ4ei(n1)π4=iπ2(1(1)n)einπ4=π2(1(1)n)i{cos(nπ4)isin(nπ4)}=π2(1(1)n){icos(nπ4)+sin(nπ4)}An=π2(1(1)n)sin(nπ4)andBn=π2(1(1)n)cos(nπ4)A2n=0andB2n=0A2n+1=2π2sin((2n+1)π4)andB2n+1=2π2cos((2n+1)π4).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com