All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 39034 by maxmathsup by imad last updated on 01/Jul/18
calculateintermsofnAn=∫02πcos(nx)cosx+sinxdxandBn=∫02πsin(nx)cosx+sinxdx.
Commented by math khazana by abdo last updated on 04/Jul/18
wehaveAn=Re(∫02πeinxcosx+sinxdx)andBn=Im(∫02πeinxcosx+sinxdx)changementeix=zgive∫02πeinxcosx+sinxdx=∫∣z∣=1znz+z−12+z−z−12idziz=∫∣z∣=1−2iznz(z+z−1−i(z−z−1))dz=∫∣z∣=1−2iznz2+1−iz2+idz=∫∣z∣=1−2izn(1−i)z2+1+idz=−2i1−i∫∣z∣=1znz2+1+i1−i=−2i(1+i)2∫∣z∣=1znz2+idz=(1−i)∫∣z∣=1znz2+idzletφ(z)=znz2+i⇒φ(z)=znz2−(−i)2=zn(z−−i)(z+−i)=zn(z−e−iπ4)(z+e−iπ4)∫−∞+∞φ(z)dz=2iπ{Res(φ,e−iπ4)+Res(φ,e−iπ4)}Res(φ,e−iπ4)=e−inπ42e−iπ4=e−i(n−1)π42Res(φ,−e−iπ4)=(−1)ne−inπ4−2e−iπ4=−(−1)n2e−i(n−1)π4⇒∫−∞+∞φ(z)dz=2iπ{12e−i(n−1)π4−(−1)n2e−i(n−1)π4}=iπ(1−(−1)n)e−i(n−1)π4=iπ(1−(−1)n){cos((n−1)π4)−isin((n−1)π4)}=π(1−(−1)n){icos((n−1)π4)+sin((n−1)π4)}⇒∫02πeinxcosx+sinxdx=(1−i)iπ(1−(−1)n)e−i(n−1)π4=iπ2(1−(−1)n)e−iπ4e−i(n−1)π4=iπ2(1−(−1)n)e−inπ4=π2(1−(−1)n)i{cos(nπ4)−isin(nπ4)}=π2(1−(−1)n){icos(nπ4)+sin(nπ4)}⇒An=π2(1−(−1)n)sin(nπ4)andBn=π2(1−(−1)n)cos(nπ4)⇒A2n=0andB2n=0A2n+1=2π2sin((2n+1)π4)andB2n+1=2π2cos((2n+1)π4).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com