Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 39035 by maxmathsup by imad last updated on 01/Jul/18

find f(t) =∫_0 ^∞    sin(x)e^(−t [x]) dx   with t>0

$${find}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:{sin}\left({x}\right){e}^{−{t}\:\left[{x}\right]} {dx}\:\:\:{with}\:{t}>\mathrm{0} \\ $$

Commented bymaxmathsup by imad last updated on 02/Jul/18

we have f(t)=Σ_(n=0) ^∞   ∫_n ^(n+1)  sin(x) e^(−nt)  dx  =Σ_(n=0) ^∞   e^(−nt)  {cos(n) −cos(n+1)}  =Σ_(n=0) ^∞  e^(−nt)  cos(n) −Σ_(n=0) ^∞  e^(−nt)  cos(n+1)  =Σ_(n=0) ^∞  e^(−nt) cos(n) −Σ_(n=1) ^∞  e^(−(n−1)t) cos(n)  = 1+(1−e^t )Σ_(n=1) ^∞   e^(−nt)  cos(n) but  Σ_(n=1) ^∞  e^(−nt)  cos(n) =Σ_(n=0) ^∞  e^(−nt) cos(n) −1  =Re( Σ_(n=0) ^∞  e^(−nt +in) ) =Re( Σ_(n=0) ^∞  (e^(−t+i) )^n ) but  Σ_(n=0) ^∞  (e^(−t+i) )^n  = (1/(1−e^(−t+i) )) = (1/(1−e^(−t) (cos1 +isin(1))))  = (1/(1−e^(−t)  cos(1)−i e^(−t) sin(1))) = ((1−e^(−t) cos(1) +i e^(−t) sin(1))/((1−e^(−t) cos(1))^2  +e^(−2t)  sin^2 (1))) ⇒  f(t) =1+(1−e^t ){ ((1−e^(−t) cos(1))/((1−e^(−t) cos(1))^2  +e^(−2t) sin^2 (1))) −1}

$${we}\:{have}\:{f}\left({t}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\int_{{n}} ^{{n}+\mathrm{1}} \:{sin}\left({x}\right)\:{e}^{−{nt}} \:{dx} \\ $$ $$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:{e}^{−{nt}} \:\left\{{cos}\left({n}\right)\:−{cos}\left({n}+\mathrm{1}\right)\right\} \\ $$ $$=\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−{nt}} \:{cos}\left({n}\right)\:−\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−{nt}} \:{cos}\left({n}+\mathrm{1}\right) \\ $$ $$=\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−{nt}} {cos}\left({n}\right)\:−\sum_{{n}=\mathrm{1}} ^{\infty} \:{e}^{−\left({n}−\mathrm{1}\right){t}} {cos}\left({n}\right) \\ $$ $$=\:\mathrm{1}+\left(\mathrm{1}−{e}^{{t}} \right)\sum_{{n}=\mathrm{1}} ^{\infty} \:\:{e}^{−{nt}} \:{cos}\left({n}\right)\:{but} \\ $$ $$\sum_{{n}=\mathrm{1}} ^{\infty} \:{e}^{−{nt}} \:{cos}\left({n}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−{nt}} {cos}\left({n}\right)\:−\mathrm{1} \\ $$ $$={Re}\left(\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−{nt}\:+{in}} \right)\:={Re}\left(\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left({e}^{−{t}+{i}} \right)^{{n}} \right)\:{but} \\ $$ $$\sum_{{n}=\mathrm{0}} ^{\infty} \:\left({e}^{−{t}+{i}} \right)^{{n}} \:=\:\frac{\mathrm{1}}{\mathrm{1}−{e}^{−{t}+{i}} }\:=\:\frac{\mathrm{1}}{\mathrm{1}−{e}^{−{t}} \left({cos}\mathrm{1}\:+{isin}\left(\mathrm{1}\right)\right)} \\ $$ $$=\:\frac{\mathrm{1}}{\mathrm{1}−{e}^{−{t}} \:{cos}\left(\mathrm{1}\right)−{i}\:{e}^{−{t}} {sin}\left(\mathrm{1}\right)}\:=\:\frac{\mathrm{1}−{e}^{−{t}} {cos}\left(\mathrm{1}\right)\:+{i}\:{e}^{−{t}} {sin}\left(\mathrm{1}\right)}{\left(\mathrm{1}−{e}^{−{t}} {cos}\left(\mathrm{1}\right)\right)^{\mathrm{2}} \:+{e}^{−\mathrm{2}{t}} \:{sin}^{\mathrm{2}} \left(\mathrm{1}\right)}\:\Rightarrow \\ $$ $${f}\left({t}\right)\:=\mathrm{1}+\left(\mathrm{1}−{e}^{{t}} \right)\left\{\:\frac{\mathrm{1}−{e}^{−{t}} {cos}\left(\mathrm{1}\right)}{\left(\mathrm{1}−{e}^{−{t}} {cos}\left(\mathrm{1}\right)\right)^{\mathrm{2}} \:+{e}^{−\mathrm{2}{t}} {sin}^{\mathrm{2}} \left(\mathrm{1}\right)}\:−\mathrm{1}\right\} \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com