Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 39067 by bshahid010@gmail.com last updated on 02/Jul/18

Commented by math khazana by abdo last updated on 03/Jul/18

=lim_(h→0)   ((2h −h^3 (√(8+h)))/(2h^4 (√(8+h))))  =lim_(h→0)   ((2 −h^2 (√(8+h)))/(2h^3 (√(8+h))))  so if h→0^+   lim(...) = +∞    if h→0^−   lim(...)= −∞ .

=limh02hh38+h2h48+h=limh02h28+h2h38+hsoifh0+lim(...)=+ifh0lim(...)=.

Commented by bshahid010@gmail.com last updated on 03/Jul/18

 wrong answer

wronganswer

Commented by math khazana by abdo last updated on 03/Jul/18

post the answer sir.

posttheanswersir.

Commented by bshahid010@gmail.com last updated on 03/Jul/18

i dont know that answer but given options  are a)−(1/(12)) b)((−4)/3) c)−((16)/3) d)−(1/(48))

idontknowthatanswerbutgivenoptionsarea)112b)43c)163d)148

Commented by math khazana by abdo last updated on 03/Jul/18

let  A(h) = (1/(h^3 (√(8+h)))) −(1/(2h))   (h≠0)  A(h) = ((2h −h^3 (√(8+h)))/(2h^4 (√(8+h)))) = ((2−h^2 (√(8+h)))/(2h^3 (√(8+h))))  we have (√(8+h))=2(√2)(√(1+(h/8)))  ∼2(√2)(1+(h/(16))) (h→0)  2−h^2 (√(8+h)) ∼2−2(√2)h^2 −(h^3 /(16))  2h^3 (√(8+h)) ∼ 4(√2)h^3 (1+(h/(16)) )=4(√2)h^3  +((√2)/4) h^4  ⇒  lim_(h→0) A(h) =lim_(h→0)   (2/(4(√2)h^3 ))  =+^−  ∞ .

letA(h)=1h38+h12h(h0)A(h)=2hh38+h2h48+h=2h28+h2h38+hwehave8+h=221+h822(1+h16)(h0)2h28+h222h2h3162h38+h42h3(1+h16)=42h3+24h4limh0A(h)=limh0242h3=+.

Commented by math khazana by abdo last updated on 03/Jul/18

for me i have considered h^3 ((√(8+h))) not  h(^3 (√(8+h)))..did you look the difference ?...

formeihaveconsideredh3(8+h)noth(38+h)..didyoulookthedifference?...

Commented by math khazana by abdo last updated on 03/Jul/18

my answer is not wrong because i have take  h^3 ((√(8+h))) not h(^3 (√(8+h)))....

myanswerisnotwrongbecauseihavetakeh3(8+h)noth(38+h)....

Answered by ajfour last updated on 03/Jul/18

lim_(h→0) {(1/(h ((8+h))^(1/3) ))−(1/(2h))}     = lim_(h→0) ((1−(h/(24))−1)/(2h)) = −(1/(48)) .

limh0{1h8+h312h}=limh01h2412h=148.

Answered by tanmay.chaudhury50@gmail.com last updated on 03/Jul/18

lim_(h→0) (1/h){(1/((8+h)^(1/3) ))−(1/2)}  lim_(h→0) (1/h){((2−(8+h)^(1/3) )/(2(8+h)^(1/3) ))}  lim_(h→0) (1/h){(((8)^(1/3) −(8+h)^(1/3) )/(2(8+h)^(1/3) ))}  lim_(h→0) (1/h){((8−8−h)/(2(8+h)^(1/3) {(8)^(2/3) +8^(1/3) (8+h)^(1/3) +(8+h)^(2/3) }))  a^3 −b^3 =(a−b)(a^2 +ab+b^2 )  =((−1)/(2×(8)^(1/3) {3×8^(2/3) }))  =((−1)/(6×8^((1/3)+(2/3)) ))=((−1)/(6×8^1 ))=((−1)/(48))

limh01h{1(8+h)1312}limh01h{2(8+h)132(8+h)13}limh01h{(8)13(8+h)132(8+h)13}limh01h{88h2(8+h)13{(8)23+813(8+h)13+(8+h)23}a3b3=(ab)(a2+ab+b2)=12×(8)13{3×823}=16×813+23=16×81=148

Terms of Service

Privacy Policy

Contact: info@tinkutara.com