Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 39089 by ajfour last updated on 02/Jul/18

Commented by ajfour last updated on 02/Jul/18

Find  (a/b)  and 𝛉 .  The curve is a semicircle and  the two red segments are equal.

$${Find}\:\:\frac{\boldsymbol{{a}}}{\boldsymbol{{b}}}\:\:{and}\:\boldsymbol{\theta}\:. \\ $$$${The}\:{curve}\:{is}\:{a}\:{semicircle}\:{and} \\ $$$${the}\:{two}\:{red}\:{segments}\:{are}\:{equal}. \\ $$

Answered by MJS last updated on 02/Jul/18

circle:  (x−(a/2))^2 +y^2 =((a/2))^2   upper semicircle  y=(√(ax−x^2 ))  tangent in P= ((p),((√(ap−p^2 ))) )  y=−((2p−a)/(2(√(ap−p^2 ))))x+((ap)/(2(√(ap−p^2 ))))  (b=((ap)/(2(√(ap−p^2 )))))  Q= ((a),(b) )  line PQ:  y=((p(2p−a))/(2(a−p)(√(ap−p^2 ))))x+((ap(2a−3p))/(2(a−p)(√(ap−p^2 ))))  y=0 ⇒ x=((ap(2a−3p))/(a−2p))  x=a−p ⇒  ⇒ p=((a(√2))/2)  ⇒ tangent:  y=−((√(−2+2(√2)))/2)x+((√(1+(√2)))/2)a  tan θ=−((√(−2+2(√2)))/2) ⇒ θ≈−24.47°

$$\mathrm{circle}: \\ $$$$\left({x}−\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} =\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\mathrm{upper}\:\mathrm{semicircle} \\ $$$${y}=\sqrt{{ax}−{x}^{\mathrm{2}} } \\ $$$$\mathrm{tangent}\:\mathrm{in}\:{P}=\begin{pmatrix}{{p}}\\{\sqrt{{ap}−{p}^{\mathrm{2}} }}\end{pmatrix} \\ $$$${y}=−\frac{\mathrm{2}{p}−{a}}{\mathrm{2}\sqrt{{ap}−{p}^{\mathrm{2}} }}{x}+\frac{{ap}}{\mathrm{2}\sqrt{{ap}−{p}^{\mathrm{2}} }} \\ $$$$\left({b}=\frac{{ap}}{\mathrm{2}\sqrt{{ap}−{p}^{\mathrm{2}} }}\right) \\ $$$${Q}=\begin{pmatrix}{{a}}\\{{b}}\end{pmatrix} \\ $$$$\mathrm{line}\:{PQ}: \\ $$$${y}=\frac{{p}\left(\mathrm{2}{p}−{a}\right)}{\mathrm{2}\left({a}−{p}\right)\sqrt{{ap}−{p}^{\mathrm{2}} }}{x}+\frac{{ap}\left(\mathrm{2}{a}−\mathrm{3}{p}\right)}{\mathrm{2}\left({a}−{p}\right)\sqrt{{ap}−{p}^{\mathrm{2}} }} \\ $$$${y}=\mathrm{0}\:\Rightarrow\:{x}=\frac{{ap}\left(\mathrm{2}{a}−\mathrm{3}{p}\right)}{{a}−\mathrm{2}{p}} \\ $$$${x}={a}−{p}\:\Rightarrow \\ $$$$\Rightarrow\:{p}=\frac{{a}\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{tangent}: \\ $$$${y}=−\frac{\sqrt{−\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}}}{\mathrm{2}}{x}+\frac{\sqrt{\mathrm{1}+\sqrt{\mathrm{2}}}}{\mathrm{2}}{a} \\ $$$$\mathrm{tan}\:\theta=−\frac{\sqrt{−\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}}}{\mathrm{2}}\:\Rightarrow\:\theta\approx−\mathrm{24}.\mathrm{47}° \\ $$

Commented by ajfour last updated on 02/Jul/18

No Sir, tan θ =+((√(−2+2(√2)))/2) .

$${No}\:{Sir},\:\mathrm{tan}\:\theta\:=+\frac{\sqrt{−\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}}}{\mathrm{2}}\:. \\ $$

Commented by MJS last updated on 02/Jul/18

yes of course, if you measure θ as a positive  angle. my solution comes from the tangent  which is decreasing...

$$\mathrm{yes}\:\mathrm{of}\:\mathrm{course},\:\mathrm{if}\:\mathrm{you}\:\mathrm{measure}\:\theta\:\mathrm{as}\:\mathrm{a}\:\mathrm{positive} \\ $$$$\mathrm{angle}.\:\mathrm{my}\:\mathrm{solution}\:\mathrm{comes}\:\mathrm{from}\:\mathrm{the}\:\mathrm{tangent} \\ $$$$\mathrm{which}\:\mathrm{is}\:\mathrm{decreasing}... \\ $$

Commented by ajfour last updated on 02/Jul/18

Thanks Sir, i also solved (and  of course created the question  myself).

$${Thanks}\:{Sir},\:{i}\:{also}\:{solved}\:\left({and}\right. \\ $$$${of}\:{course}\:{created}\:{the}\:{question} \\ $$$$\left.{myself}\right). \\ $$

Commented by MJS last updated on 02/Jul/18

I like your geometric questions and it′s very  interesting how different people differently  solve the same problems

$$\mathrm{I}\:\mathrm{like}\:\mathrm{your}\:\mathrm{geometric}\:\mathrm{questions}\:\mathrm{and}\:\mathrm{it}'\mathrm{s}\:\mathrm{very} \\ $$$$\mathrm{interesting}\:\mathrm{how}\:\mathrm{different}\:\mathrm{people}\:\mathrm{differently} \\ $$$$\mathrm{solve}\:\mathrm{the}\:\mathrm{same}\:\mathrm{problems} \\ $$

Answered by ajfour last updated on 02/Jul/18

Let origin be center of circle.  Point of tangency P≡((a/2)sin θ,(a/2)cos θ)  The dashed line makes angle θ  with vertical ; so  tan θ =((sin θ)/(cos θ))= ((b−(a/2)cos θ)/((a/2)+(a/2)sin θ))  ⇒ (a/2)sin θ+(a/2)sin^2 θ=bcos θ−(a/2)cos^2 θ      bcos θ−(a/2) =(a/2)sin θ    ...(i)  let the red segment be                  x =(a/2)−(a/2)sin θ  Then     ((a−x)/b) = (x/(b−y))   ⇒  (((a/2)+(a/2)sin θ)/b) = (((a/2)−(a/2)sin θ)/(b−(a/2)cos θ))   b+bsin θ−(a/2)cos θ−(a/2)cos θsin θ                      = b−bsin θ  2bsin θ−(a/2)cos θ = (a/2)sin θcos θ                                                  ....(ii)  Now (i)×cos θ  is      bcos^2 θ−(a/2)cos θ = (a/2)sin θcos θ  equating this with (ii)      2bsin θ = bcos^2 θ  ⇒   sin^2 θ +2sin θ−1=0          (sin θ+1)^2 =2               sin θ = ±(√2)−1     considering the +ve value           sin θ = (√2)−1           tan θ = (((√2)−1)/(√(1−((√2)−1)^2 )))           θ=tan^(−1) ((((√2)−1)/(√(2(√2)−2))))             = tan^(−1) (((√(2(√2)−2))/2) )      (a/b) = ((2cos θ)/(1+sin θ)) = ((2(√(2(√2)−2)))/(√2))  hence   (a/b) = 2(√((√2)−1))  .

$${Let}\:{origin}\:{be}\:{center}\:{of}\:{circle}. \\ $$$${Point}\:{of}\:{tangency}\:{P}\equiv\left(\frac{{a}}{\mathrm{2}}\mathrm{sin}\:\theta,\frac{{a}}{\mathrm{2}}\mathrm{cos}\:\theta\right) \\ $$$${The}\:{dashed}\:{line}\:{makes}\:{angle}\:\theta \\ $$$${with}\:{vertical}\:;\:{so} \\ $$$$\mathrm{tan}\:\theta\:=\frac{\mathrm{sin}\:\theta}{\mathrm{cos}\:\theta}=\:\frac{{b}−\frac{{a}}{\mathrm{2}}\mathrm{cos}\:\theta}{\frac{{a}}{\mathrm{2}}+\frac{{a}}{\mathrm{2}}\mathrm{sin}\:\theta} \\ $$$$\Rightarrow\:\frac{{a}}{\mathrm{2}}\mathrm{sin}\:\theta+\frac{{a}}{\mathrm{2}}\mathrm{sin}\:^{\mathrm{2}} \theta={b}\mathrm{cos}\:\theta−\frac{{a}}{\mathrm{2}}\mathrm{cos}\:^{\mathrm{2}} \theta \\ $$$$\:\:\:\:{b}\mathrm{cos}\:\theta−\frac{{a}}{\mathrm{2}}\:=\frac{{a}}{\mathrm{2}}\mathrm{sin}\:\theta\:\:\:\:...\left({i}\right) \\ $$$${let}\:{the}\:{red}\:{segment}\:{be} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}\:=\frac{{a}}{\mathrm{2}}−\frac{{a}}{\mathrm{2}}\mathrm{sin}\:\theta \\ $$$${Then}\:\:\:\:\:\frac{{a}−{x}}{{b}}\:=\:\frac{{x}}{{b}−{y}} \\ $$$$\:\Rightarrow\:\:\frac{\frac{{a}}{\mathrm{2}}+\frac{{a}}{\mathrm{2}}\mathrm{sin}\:\theta}{{b}}\:=\:\frac{\frac{{a}}{\mathrm{2}}−\frac{{a}}{\mathrm{2}}\mathrm{sin}\:\theta}{{b}−\frac{{a}}{\mathrm{2}}\mathrm{cos}\:\theta} \\ $$$$\:{b}+{b}\mathrm{sin}\:\theta−\frac{{a}}{\mathrm{2}}\mathrm{cos}\:\theta−\frac{{a}}{\mathrm{2}}\mathrm{cos}\:\theta\mathrm{sin}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{b}−{b}\mathrm{sin}\:\theta \\ $$$$\mathrm{2}{b}\mathrm{sin}\:\theta−\frac{{a}}{\mathrm{2}}\mathrm{cos}\:\theta\:=\:\frac{{a}}{\mathrm{2}}\mathrm{sin}\:\theta\mathrm{cos}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\left({ii}\right) \\ $$$${Now}\:\left({i}\right)×\mathrm{cos}\:\theta\:\:{is} \\ $$$$\:\:\:\:{b}\mathrm{cos}\:^{\mathrm{2}} \theta−\frac{{a}}{\mathrm{2}}\mathrm{cos}\:\theta\:=\:\frac{{a}}{\mathrm{2}}\mathrm{sin}\:\theta\mathrm{cos}\:\theta \\ $$$${equating}\:{this}\:{with}\:\left({ii}\right) \\ $$$$\:\:\:\:\mathrm{2}{b}\mathrm{sin}\:\theta\:=\:{b}\mathrm{cos}\:^{\mathrm{2}} \theta \\ $$$$\Rightarrow\:\:\:\mathrm{sin}\:^{\mathrm{2}} \theta\:+\mathrm{2sin}\:\theta−\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\left(\mathrm{sin}\:\theta+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{sin}\:\theta\:=\:\pm\sqrt{\mathrm{2}}−\mathrm{1} \\ $$$$\:\:\:{considering}\:{the}\:+{ve}\:{value} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{sin}\:\theta\:=\:\sqrt{\mathrm{2}}−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{tan}\:\theta\:=\:\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\sqrt{\mathrm{1}−\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{2}} }} \\ $$$$\:\:\:\:\:\:\:\:\:\theta=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\sqrt{\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{2}}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{2}}}{\mathrm{2}}\:\right)\: \\ $$$$\:\:\:\frac{{a}}{{b}}\:=\:\frac{\mathrm{2cos}\:\theta}{\mathrm{1}+\mathrm{sin}\:\theta}\:=\:\frac{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{2}}}{\sqrt{\mathrm{2}}} \\ $$$${hence}\:\:\:\frac{\boldsymbol{{a}}}{\boldsymbol{{b}}}\:=\:\mathrm{2}\sqrt{\sqrt{\mathrm{2}}−\mathrm{1}}\:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com