Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 39172 by Rio Mike last updated on 03/Jul/18

find the angle between   3i − 4j and i − j

$${find}\:{the}\:{angle}\:{between}\: \\ $$$$\mathrm{3}{i}\:−\:\mathrm{4}{j}\:{and}\:{i}\:−\:{j} \\ $$

Commented by math khazana by abdo last updated on 03/Jul/18

let u^→ =3i−4j ⇒u(3,−4)  v^→ =i−j?⇒v^→ (1,−1)  cos(u^→ ,v^→ ) = ((u^→  .v^→ )/(∣∣u^→ ∣∣.∣∣v^→ ∣∣)) = ((3×1) +(4))/(5(√2))) =(7/(5(√2)))  sin(u^→  ,v^→ ) =((det (u,v))/(∣∣u∣∣.∣∣v∣∣)) =( determinant (((3      1)),((−4   −1)))/(5(√2))) = (1/(5(√2))) ⇒  tan(u,v) = (1/7) ⇒ θ =arctan((1/7)).

$${let}\:\overset{\rightarrow} {{u}}=\mathrm{3}{i}−\mathrm{4}{j}\:\Rightarrow{u}\left(\mathrm{3},−\mathrm{4}\right) \\ $$$$\overset{\rightarrow} {{v}}={i}−{j}?\Rightarrow\overset{\rightarrow} {{v}}\left(\mathrm{1},−\mathrm{1}\right) \\ $$$${cos}\left(\overset{\rightarrow} {{u}},\overset{\rightarrow} {{v}}\right)\:=\:\frac{\overset{\rightarrow} {{u}}\:.\overset{\rightarrow} {{v}}}{\mid\mid\overset{\rightarrow} {{u}}\mid\mid.\mid\mid\overset{\rightarrow} {{v}}\mid\mid}\:=\:\frac{\left.\mathrm{3}×\mathrm{1}\right)\:+\left(\mathrm{4}\right)}{\mathrm{5}\sqrt{\mathrm{2}}}\:=\frac{\mathrm{7}}{\mathrm{5}\sqrt{\mathrm{2}}} \\ $$$${sin}\left(\overset{\rightarrow} {{u}}\:,\overset{\rightarrow} {{v}}\right)\:=\frac{{det}\:\left({u},{v}\right)}{\mid\mid{u}\mid\mid.\mid\mid{v}\mid\mid}\:=\frac{\begin{vmatrix}{\mathrm{3}\:\:\:\:\:\:\mathrm{1}}\\{−\mathrm{4}\:\:\:−\mathrm{1}}\end{vmatrix}}{\mathrm{5}\sqrt{\mathrm{2}}}\:=\:\frac{\mathrm{1}}{\mathrm{5}\sqrt{\mathrm{2}}}\:\Rightarrow \\ $$$${tan}\left({u},{v}\right)\:=\:\frac{\mathrm{1}}{\mathrm{7}}\:\Rightarrow\:\theta\:={arctan}\left(\frac{\mathrm{1}}{\mathrm{7}}\right). \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 03/Jul/18

vector 3i−4j  make angle α with x axis   so m_1 =tanα=((−4)/3)  m_2 =tanβ=((−1)/1)  tanθ=((m_1 ∼m_2 )/(1+m_1 m_2 ))=((−1+(4/3))/(1+(4/3)))=((1/3)/(7/3))=(1/7)  θ=tan^(−1) ((1/7))  cosθ=(7/((√(50)) ))    another approach...  cosθ=((3×1+(−4)×(−1))/((√(3^2 +(−4)^2 )) ×(√(1^2 +(−1)^2 ))))  =(7/(√(50)))

$${vector}\:\mathrm{3}{i}−\mathrm{4}{j}\:\:{make}\:{angle}\:\alpha\:{with}\:{x}\:{axis}\: \\ $$$${so}\:{m}_{\mathrm{1}} ={tan}\alpha=\frac{−\mathrm{4}}{\mathrm{3}} \\ $$$${m}_{\mathrm{2}} ={tan}\beta=\frac{−\mathrm{1}}{\mathrm{1}} \\ $$$${tan}\theta=\frac{{m}_{\mathrm{1}} \sim{m}_{\mathrm{2}} }{\mathrm{1}+{m}_{\mathrm{1}} {m}_{\mathrm{2}} }=\frac{−\mathrm{1}+\frac{\mathrm{4}}{\mathrm{3}}}{\mathrm{1}+\frac{\mathrm{4}}{\mathrm{3}}}=\frac{\frac{\mathrm{1}}{\mathrm{3}}}{\frac{\mathrm{7}}{\mathrm{3}}}=\frac{\mathrm{1}}{\mathrm{7}} \\ $$$$\theta={tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{7}}\right) \\ $$$${cos}\theta=\frac{\mathrm{7}}{\sqrt{\mathrm{50}}\:} \\ $$$$ \\ $$$${another}\:{approach}... \\ $$$${cos}\theta=\frac{\mathrm{3}×\mathrm{1}+\left(−\mathrm{4}\right)×\left(−\mathrm{1}\right)}{\sqrt{\mathrm{3}^{\mathrm{2}} +\left(−\mathrm{4}\right)^{\mathrm{2}} }\:×\sqrt{\mathrm{1}^{\mathrm{2}} +\left(−\mathrm{1}\right)^{\mathrm{2}} }} \\ $$$$=\frac{\mathrm{7}}{\sqrt{\mathrm{50}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com