Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 3928 by Filup last updated on 24/Dec/15

Is this solvable:    y=⌊f(x)⌋         floor function  (dy/dx)=???

$$\mathrm{Is}\:\mathrm{this}\:\mathrm{solvable}: \\ $$$$ \\ $$$${y}=\lfloor{f}\left({x}\right)\rfloor\:\:\:\:\:\:\:\:\:\mathrm{floor}\:\mathrm{function} \\ $$$$\frac{{dy}}{{dx}}=??? \\ $$

Commented by Yozzii last updated on 25/Dec/15

∃f(x)∣(dy/dx)  exists. Let f(x)=x ,  x∈R.  For n<x<n+1, n∈Z y=⌊f(x)⌋=⌊x⌋=n  ⇒ (dy/dx)=0.   Suppose we wished to determine the  value of lim_(x→n) y. We observe that,  for the left hand limit, y=⌊x⌋=n−1  since for 0≤n−1<x<n, ⌊x⌋=n−1.  ∴ lim_(x→n^− ) y=lim_(x→n^− ) (n−1)=n−1.  The right hand limit yields y→n,  i.e lim_(x→n^+ ) y=n≠n−1=lim_(x→n^− ) y.  Therefore, a jump discontinuity   exists at all points x=n>0, n∈Z  If n<0, then n−1<n<x<n+1≤0.  ∴ lim_(x→n^− ) y=lim_(x→n^− ) n−1=n−1  but lim_(x→n^+ ) y=lim_(x→n^+ ) n+1=n+1 or lim_(x→n^+ ) y=0  0≥n+1>x>n⇒⌊x⌋=n+1 or 0.  Again, lim_(x→n^− ) y≠lim_(x→n^+ ) y so jump discontinuities  exist at x=n<0, n∈Z.  At points of discontuity, derivatives  do not exist⇒(dy/dx) is undefined.

$$\exists{f}\left({x}\right)\mid\frac{{dy}}{{dx}}\:\:{exists}.\:{Let}\:{f}\left({x}\right)={x}\:,\:\:{x}\in\mathbb{R}. \\ $$$${For}\:{n}<{x}<{n}+\mathrm{1},\:{n}\in\mathbb{Z}\:{y}=\lfloor{f}\left({x}\right)\rfloor=\lfloor{x}\rfloor={n} \\ $$$$\Rightarrow\:\frac{{dy}}{{dx}}=\mathrm{0}.\: \\ $$$${Suppose}\:{we}\:{wished}\:{to}\:{determine}\:{the} \\ $$$${value}\:{of}\:\underset{{x}\rightarrow{n}} {\mathrm{lim}}{y}.\:{We}\:{observe}\:{that}, \\ $$$${for}\:{the}\:{left}\:{hand}\:{limit},\:{y}=\lfloor{x}\rfloor={n}−\mathrm{1} \\ $$$${since}\:{for}\:\mathrm{0}\leqslant{n}−\mathrm{1}<{x}<{n},\:\lfloor{x}\rfloor={n}−\mathrm{1}. \\ $$$$\therefore\:\underset{{x}\rightarrow{n}^{−} } {\mathrm{lim}}{y}=\underset{{x}\rightarrow{n}^{−} } {\mathrm{lim}}\left({n}−\mathrm{1}\right)={n}−\mathrm{1}. \\ $$$${The}\:{right}\:{hand}\:{limit}\:{yields}\:{y}\rightarrow{n}, \\ $$$${i}.{e}\:\underset{{x}\rightarrow{n}^{+} } {\mathrm{lim}}{y}={n}\neq{n}−\mathrm{1}=\underset{{x}\rightarrow{n}^{−} } {\mathrm{lim}}{y}. \\ $$$${Therefore},\:{a}\:{jump}\:{discontinuity}\: \\ $$$${exists}\:{at}\:{all}\:{points}\:{x}={n}>\mathrm{0},\:{n}\in\mathbb{Z} \\ $$$${If}\:{n}<\mathrm{0},\:{then}\:{n}−\mathrm{1}<{n}<{x}<{n}+\mathrm{1}\leqslant\mathrm{0}. \\ $$$$\therefore\:\underset{{x}\rightarrow{n}^{−} } {\mathrm{lim}}{y}=\underset{{x}\rightarrow{n}^{−} } {\mathrm{lim}}{n}−\mathrm{1}={n}−\mathrm{1} \\ $$$${but}\:\underset{{x}\rightarrow{n}^{+} } {\mathrm{lim}}{y}=\underset{{x}\rightarrow{n}^{+} } {\mathrm{lim}}{n}+\mathrm{1}={n}+\mathrm{1}\:{or}\:\underset{{x}\rightarrow{n}^{+} } {\mathrm{lim}}{y}=\mathrm{0} \\ $$$$\mathrm{0}\geqslant{n}+\mathrm{1}>{x}>{n}\Rightarrow\lfloor{x}\rfloor={n}+\mathrm{1}\:{or}\:\mathrm{0}. \\ $$$${Again},\:\underset{{x}\rightarrow{n}^{−} } {\mathrm{lim}}{y}\neq\underset{{x}\rightarrow{n}^{+} } {\mathrm{lim}}{y}\:{so}\:{jump}\:{discontinuities} \\ $$$${exist}\:{at}\:{x}={n}<\mathrm{0},\:{n}\in\mathbb{Z}. \\ $$$${At}\:{points}\:{of}\:{discontuity},\:{derivatives} \\ $$$${do}\:{not}\:{exist}\Rightarrow\frac{{dy}}{{dx}}\:{is}\:{undefined}. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by 123456 last updated on 26/Dec/15

Terms of Service

Privacy Policy

Contact: info@tinkutara.com