Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 39303 by behi83417@gmail.com last updated on 05/Jul/18

Commented by behi83417@gmail.com last updated on 05/Jul/18

equaliteral triangle with sides:  BC=1,rotates about :B,at angle:15^•   1)find common area between  rest and rotated case.  2)yes or no!  common region is a cyclic shape.

equaliteraltrianglewithsides:BC=1,rotatesabout:B,atangle:151)findcommonareabetweenrestandrotatedcase.2)yesorno!commonregionisacyclicshape.

Answered by MrW3 last updated on 05/Jul/18

Commented by MrW3 last updated on 05/Jul/18

let a=side length =1  let θ=rotation angle=15°    BD=(((√3)a)/(2 cos (θ/2)))  α=30°−(θ/2)  β=60°+θ  ⇒α+β=90°+(θ/2)  ((EB)/(sin (180°−α−β)))=((BD)/(sin β))  ⇒EB=(((√3)a sin (α+β))/(2 cos (θ/2) sin β))=(((√3)a)/(2 sin (60°+θ)))  A_(ΔDBE) =(1/2)×DB×EB×sin α  A_(common) =2A_(ΔDBE) =DB×EB×sin α  =(((√3)a)/(2 cos (θ/2)))×(((√3)a)/(2 sin (60°+θ)))×sin (30°−(θ/2))  =((3a^2  sin (30°−(θ/2)))/(4 cos (θ/2) sin (60°+θ)))  =A_0 (((√3) sin (30°−(θ/2)))/(cos (θ/2) sin (60°+θ)))    the common area is not cyclic since  2β=120°+2θ is not always equal to 180°.

leta=sidelength=1letθ=rotationangle=15°BD=3a2cosθ2α=30°θ2β=60°+θα+β=90°+θ2EBsin(180°αβ)=BDsinβEB=3asin(α+β)2cosθ2sinβ=3a2sin(60°+θ)AΔDBE=12×DB×EB×sinαAcommon=2AΔDBE=DB×EB×sinα=3a2cosθ2×3a2sin(60°+θ)×sin(30°θ2)=3a2sin(30°θ2)4cosθ2sin(60°+θ)=A03sin(30°θ2)cosθ2sin(60°+θ)thecommonareaisnotcyclicsince2β=120°+2θisnotalwaysequalto180°.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com